Spaces:
Runtime error
Runtime error
File size: 23,289 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import json
import os
import re
import shutil
import cv2
import imageio
import matplotlib.pyplot as plt
import numpy as np
import torch
import trimesh
import wandb
from matplotlib import cm
from matplotlib.colors import LinearSegmentedColormap
from PIL import Image, ImageDraw
from pytorch_lightning.loggers import WandbLogger
from craftsman.models.geometry.utils import Mesh
from craftsman.utils.typing import *
class SaverMixin:
_save_dir: Optional[str] = None
_wandb_logger: Optional[WandbLogger] = None
def set_save_dir(self, save_dir: str):
self._save_dir = save_dir
def get_save_dir(self):
if self._save_dir is None:
raise ValueError("Save dir is not set")
return self._save_dir
def convert_data(self, data):
if data is None:
return None
elif isinstance(data, np.ndarray):
return data
elif isinstance(data, torch.Tensor):
return data.detach().cpu().numpy()
elif isinstance(data, list):
return [self.convert_data(d) for d in data]
elif isinstance(data, dict):
return {k: self.convert_data(v) for k, v in data.items()}
else:
raise TypeError(
"Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting",
type(data),
)
def get_save_path(self, filename):
save_path = os.path.join(self.get_save_dir(), filename)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
return save_path
def create_loggers(self, cfg_loggers: DictConfig) -> None:
if "wandb" in cfg_loggers.keys() and cfg_loggers.wandb.enable:
self._wandb_logger = WandbLogger(
project=cfg_loggers.wandb.project, name=cfg_loggers.wandb.name
)
def get_loggers(self) -> List:
if self._wandb_logger:
return [self._wandb_logger]
else:
return []
DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)}
DEFAULT_UV_KWARGS = {
"data_format": "HWC",
"data_range": (0, 1),
"cmap": "checkerboard",
}
DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"}
DEFAULT_GRID_KWARGS = {"align": "max"}
def get_rgb_image_(self, img, data_format, data_range, rgba=False):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
if img.dtype != np.uint8:
img = img.clip(min=data_range[0], max=data_range[1])
img = (
(img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0
).astype(np.uint8)
nc = 4 if rgba else 3
imgs = [img[..., start : start + nc] for start in range(0, img.shape[-1], nc)]
imgs = [
img_
if img_.shape[-1] == nc
else np.concatenate(
[
img_,
np.zeros(
(img_.shape[0], img_.shape[1], nc - img_.shape[2]),
dtype=img_.dtype,
),
],
axis=-1,
)
for img_ in imgs
]
img = np.concatenate(imgs, axis=1)
if rgba:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def _save_rgb_image(
self,
filename,
img,
data_format,
data_range,
name: Optional[str] = None,
step: Optional[int] = None,
):
img = self.get_rgb_image_(img, data_format, data_range)
cv2.imwrite(filename, img)
if name and self._wandb_logger:
wandb.log(
{
name: wandb.Image(self.get_save_path(filename)),
"trainer/global_step": step,
}
)
def save_rgb_image(
self,
filename,
img,
data_format=DEFAULT_RGB_KWARGS["data_format"],
data_range=DEFAULT_RGB_KWARGS["data_range"],
name: Optional[str] = None,
step: Optional[int] = None,
) -> str:
save_path = self.get_save_path(filename)
self._save_rgb_image(save_path, img, data_format, data_range, name, step)
return save_path
def get_uv_image_(self, img, data_format, data_range, cmap):
img = self.convert_data(img)
assert data_format in ["CHW", "HWC"]
if data_format == "CHW":
img = img.transpose(1, 2, 0)
img = img.clip(min=data_range[0], max=data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in ["checkerboard", "color"]
if cmap == "checkerboard":
n_grid = 64
mask = (img * n_grid).astype(int)
mask = (mask[..., 0] + mask[..., 1]) % 2 == 0
img = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 255
img[mask] = np.array([255, 0, 255], dtype=np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif cmap == "color":
img_ = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
img_[..., 0] = (img[..., 0] * 255).astype(np.uint8)
img_[..., 1] = (img[..., 1] * 255).astype(np.uint8)
img_ = cv2.cvtColor(img_, cv2.COLOR_RGB2BGR)
img = img_
return img
def save_uv_image(
self,
filename,
img,
data_format=DEFAULT_UV_KWARGS["data_format"],
data_range=DEFAULT_UV_KWARGS["data_range"],
cmap=DEFAULT_UV_KWARGS["cmap"],
) -> str:
save_path = self.get_save_path(filename)
img = self.get_uv_image_(img, data_format, data_range, cmap)
cv2.imwrite(save_path, img)
return save_path
def get_grayscale_image_(self, img, data_range, cmap):
img = self.convert_data(img)
img = np.nan_to_num(img)
if data_range is None:
img = (img - img.min()) / (img.max() - img.min())
else:
img = img.clip(data_range[0], data_range[1])
img = (img - data_range[0]) / (data_range[1] - data_range[0])
assert cmap in [None, "jet", "magma", "spectral"]
if cmap == None:
img = (img * 255.0).astype(np.uint8)
img = np.repeat(img[..., None], 3, axis=2)
elif cmap == "jet":
img = (img * 255.0).astype(np.uint8)
img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
elif cmap == "magma":
img = 1.0 - img
base = cm.get_cmap("magma")
num_bins = 256
colormap = LinearSegmentedColormap.from_list(
f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins
)(np.linspace(0, 1, num_bins))[:, :3]
a = np.floor(img * 255.0)
b = (a + 1).clip(max=255.0)
f = img * 255.0 - a
a = a.astype(np.uint16).clip(0, 255)
b = b.astype(np.uint16).clip(0, 255)
img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None]
img = (img * 255.0).astype(np.uint8)
elif cmap == "spectral":
colormap = plt.get_cmap("Spectral")
def blend_rgba(image):
image = image[..., :3] * image[..., -1:] + (
1.0 - image[..., -1:]
) # blend A to RGB
return image
img = colormap(img)
img = blend_rgba(img)
img = (img * 255).astype(np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def _save_grayscale_image(
self,
filename,
img,
data_range,
cmap,
name: Optional[str] = None,
step: Optional[int] = None,
):
img = self.get_grayscale_image_(img, data_range, cmap)
cv2.imwrite(filename, img)
if name and self._wandb_logger:
wandb.log(
{
name: wandb.Image(self.get_save_path(filename)),
"trainer/global_step": step,
}
)
def save_grayscale_image(
self,
filename,
img,
data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"],
cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"],
name: Optional[str] = None,
step: Optional[int] = None,
) -> str:
save_path = self.get_save_path(filename)
self._save_grayscale_image(save_path, img, data_range, cmap, name, step)
return save_path
def get_image_grid_(self, imgs, align):
if isinstance(imgs[0], list):
return np.concatenate(
[self.get_image_grid_(row, align) for row in imgs], axis=0
)
cols = []
for col in imgs:
assert col["type"] in ["rgb", "uv", "grayscale"]
if col["type"] == "rgb":
rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy()
rgb_kwargs.update(col["kwargs"])
cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs))
elif col["type"] == "uv":
uv_kwargs = self.DEFAULT_UV_KWARGS.copy()
uv_kwargs.update(col["kwargs"])
cols.append(self.get_uv_image_(col["img"], **uv_kwargs))
elif col["type"] == "grayscale":
grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy()
grayscale_kwargs.update(col["kwargs"])
cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs))
if align == "max":
h = max([col.shape[0] for col in cols])
w = max([col.shape[1] for col in cols])
elif align == "min":
h = min([col.shape[0] for col in cols])
w = min([col.shape[1] for col in cols])
elif isinstance(align, int):
h = align
w = align
elif (
isinstance(align, tuple)
and isinstance(align[0], int)
and isinstance(align[1], int)
):
h, w = align
else:
raise ValueError(
f"Unsupported image grid align: {align}, should be min, max, int or (int, int)"
)
for i in range(len(cols)):
if cols[i].shape[0] != h or cols[i].shape[1] != w:
cols[i] = cv2.resize(cols[i], (w, h), interpolation=cv2.INTER_LINEAR)
return np.concatenate(cols, axis=1)
def save_image_grid(
self,
filename,
imgs,
align=DEFAULT_GRID_KWARGS["align"],
name: Optional[str] = None,
step: Optional[int] = None,
texts: Optional[List[float]] = None,
):
save_path = self.get_save_path(filename)
img = self.get_image_grid_(imgs, align=align)
if texts is not None:
img = Image.fromarray(img)
draw = ImageDraw.Draw(img)
black, white = (0, 0, 0), (255, 255, 255)
for i, text in enumerate(texts):
draw.text((2, (img.size[1] // len(texts)) * i + 1), f"{text}", white)
draw.text((0, (img.size[1] // len(texts)) * i + 1), f"{text}", white)
draw.text((2, (img.size[1] // len(texts)) * i - 1), f"{text}", white)
draw.text((0, (img.size[1] // len(texts)) * i - 1), f"{text}", white)
draw.text((1, (img.size[1] // len(texts)) * i), f"{text}", black)
img = np.asarray(img)
cv2.imwrite(save_path, img)
if name and self._wandb_logger:
wandb.log({name: wandb.Image(save_path), "trainer/global_step": step})
return save_path
def save_image(self, filename, img) -> str:
save_path = self.get_save_path(filename)
img = self.convert_data(img)
assert img.dtype == np.uint8 or img.dtype == np.uint16
if img.ndim == 3 and img.shape[-1] == 3:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
elif img.ndim == 3 and img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
cv2.imwrite(save_path, img)
return save_path
def save_cubemap(self, filename, img, data_range=(0, 1), rgba=False) -> str:
save_path = self.get_save_path(filename)
img = self.convert_data(img)
assert img.ndim == 4 and img.shape[0] == 6 and img.shape[1] == img.shape[2]
imgs_full = []
for start in range(0, img.shape[-1], 3):
img_ = img[..., start : start + 3]
img_ = np.stack(
[
self.get_rgb_image_(img_[i], "HWC", data_range, rgba=rgba)
for i in range(img_.shape[0])
],
axis=0,
)
size = img_.shape[1]
placeholder = np.zeros((size, size, 3), dtype=np.float32)
img_full = np.concatenate(
[
np.concatenate(
[placeholder, img_[2], placeholder, placeholder], axis=1
),
np.concatenate([img_[1], img_[4], img_[0], img_[5]], axis=1),
np.concatenate(
[placeholder, img_[3], placeholder, placeholder], axis=1
),
],
axis=0,
)
imgs_full.append(img_full)
imgs_full = np.concatenate(imgs_full, axis=1)
cv2.imwrite(save_path, imgs_full)
return save_path
def save_data(self, filename, data) -> str:
data = self.convert_data(data)
if isinstance(data, dict):
if not filename.endswith(".npz"):
filename += ".npz"
save_path = self.get_save_path(filename)
np.savez(save_path, **data)
else:
if not filename.endswith(".npy"):
filename += ".npy"
save_path = self.get_save_path(filename)
np.save(save_path, data)
return save_path
def save_state_dict(self, filename, data) -> str:
save_path = self.get_save_path(filename)
torch.save(data, save_path)
return save_path
def save_img_sequence(
self,
filename,
img_dir,
matcher,
save_format="mp4",
fps=30,
name: Optional[str] = None,
step: Optional[int] = None,
) -> str:
assert save_format in ["gif", "mp4"]
if not filename.endswith(save_format):
filename += f".{save_format}"
save_path = self.get_save_path(filename)
matcher = re.compile(matcher)
img_dir = os.path.join(self.get_save_dir(), img_dir)
imgs = []
for f in os.listdir(img_dir):
if matcher.search(f):
imgs.append(f)
imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0]))
imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs]
if save_format == "gif":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(save_path, imgs, fps=fps, palettesize=256)
elif save_format == "mp4":
imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs]
imageio.mimsave(save_path, imgs, fps=fps)
if name and self._wandb_logger:
wandb.log(
{
name: wandb.Video(save_path, format="mp4"),
"trainer/global_step": step,
}
)
return save_path
def save_mesh(self, filename, v_pos, t_pos_idx, v_tex=None, t_tex_idx=None) -> str:
save_path = self.get_save_path(filename)
v_pos = self.convert_data(v_pos)
t_pos_idx = self.convert_data(t_pos_idx)
mesh = trimesh.Trimesh(vertices=v_pos, faces=t_pos_idx)
mesh.export(save_path)
return save_path
def save_obj(
self,
filename: str,
mesh: Mesh,
save_mat: bool = False,
save_normal: bool = False,
save_uv: bool = False,
save_vertex_color: bool = False,
map_Kd: Optional[Float[Tensor, "H W 3"]] = None,
map_Ks: Optional[Float[Tensor, "H W 3"]] = None,
map_Bump: Optional[Float[Tensor, "H W 3"]] = None,
map_Pm: Optional[Float[Tensor, "H W 1"]] = None,
map_Pr: Optional[Float[Tensor, "H W 1"]] = None,
map_format: str = "jpg",
) -> List[str]:
save_paths: List[str] = []
if not filename.endswith(".obj"):
filename += ".obj"
v_pos, t_pos_idx = self.convert_data(mesh.v_pos), self.convert_data(
mesh.t_pos_idx
)
v_nrm, v_tex, t_tex_idx, v_rgb = None, None, None, None
if save_normal:
v_nrm = self.convert_data(mesh.v_nrm)
if save_uv:
v_tex, t_tex_idx = self.convert_data(mesh.v_tex), self.convert_data(
mesh.t_tex_idx
)
if save_vertex_color:
v_rgb = self.convert_data(mesh.v_rgb)
matname, mtllib = None, None
if save_mat:
matname = "default"
mtl_filename = filename.replace(".obj", ".mtl")
mtllib = os.path.basename(mtl_filename)
mtl_save_paths = self._save_mtl(
mtl_filename,
matname,
map_Kd=self.convert_data(map_Kd),
map_Ks=self.convert_data(map_Ks),
map_Bump=self.convert_data(map_Bump),
map_Pm=self.convert_data(map_Pm),
map_Pr=self.convert_data(map_Pr),
map_format=map_format,
)
save_paths += mtl_save_paths
obj_save_path = self._save_obj(
filename,
v_pos,
t_pos_idx,
v_nrm=v_nrm,
v_tex=v_tex,
t_tex_idx=t_tex_idx,
v_rgb=v_rgb,
matname=matname,
mtllib=mtllib,
)
save_paths.append(obj_save_path)
return save_paths
def _save_obj(
self,
filename,
v_pos,
t_pos_idx,
v_nrm=None,
v_tex=None,
t_tex_idx=None,
v_rgb=None,
matname=None,
mtllib=None,
) -> str:
obj_str = ""
if matname is not None:
obj_str += f"mtllib {mtllib}\n"
obj_str += f"g object\n"
obj_str += f"usemtl {matname}\n"
for i in range(len(v_pos)):
obj_str += f"v {v_pos[i][0]} {v_pos[i][1]} {v_pos[i][2]}"
if v_rgb is not None:
obj_str += f" {v_rgb[i][0]} {v_rgb[i][1]} {v_rgb[i][2]}"
obj_str += "\n"
if v_nrm is not None:
for v in v_nrm:
obj_str += f"vn {v[0]} {v[1]} {v[2]}\n"
if v_tex is not None:
for v in v_tex:
obj_str += f"vt {v[0]} {1.0 - v[1]}\n"
for i in range(len(t_pos_idx)):
obj_str += "f"
for j in range(3):
obj_str += f" {t_pos_idx[i][j] + 1}/"
if v_tex is not None:
obj_str += f"{t_tex_idx[i][j] + 1}"
obj_str += "/"
if v_nrm is not None:
obj_str += f"{t_pos_idx[i][j] + 1}"
obj_str += "\n"
save_path = self.get_save_path(filename)
with open(save_path, "w") as f:
f.write(obj_str)
return save_path
def _save_mtl(
self,
filename,
matname,
Ka=(0.0, 0.0, 0.0),
Kd=(1.0, 1.0, 1.0),
Ks=(0.0, 0.0, 0.0),
map_Kd=None,
map_Ks=None,
map_Bump=None,
map_Pm=None,
map_Pr=None,
map_format="jpg",
step: Optional[int] = None,
) -> List[str]:
mtl_save_path = self.get_save_path(filename)
save_paths = [mtl_save_path]
mtl_str = f"newmtl {matname}\n"
mtl_str += f"Ka {Ka[0]} {Ka[1]} {Ka[2]}\n"
if map_Kd is not None:
map_Kd_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_kd.{map_format}"
)
mtl_str += f"map_Kd texture_kd.{map_format}\n"
self._save_rgb_image(
map_Kd_save_path,
map_Kd,
data_format="HWC",
data_range=(0, 1),
name=f"{matname}_Kd",
step=step,
)
save_paths.append(map_Kd_save_path)
else:
mtl_str += f"Kd {Kd[0]} {Kd[1]} {Kd[2]}\n"
if map_Ks is not None:
map_Ks_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_ks.{map_format}"
)
mtl_str += f"map_Ks texture_ks.{map_format}\n"
self._save_rgb_image(
map_Ks_save_path,
map_Ks,
data_format="HWC",
data_range=(0, 1),
name=f"{matname}_Ks",
step=step,
)
save_paths.append(map_Ks_save_path)
else:
mtl_str += f"Ks {Ks[0]} {Ks[1]} {Ks[2]}\n"
if map_Bump is not None:
map_Bump_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_nrm.{map_format}"
)
mtl_str += f"map_Bump texture_nrm.{map_format}\n"
self._save_rgb_image(
map_Bump_save_path,
map_Bump,
data_format="HWC",
data_range=(0, 1),
name=f"{matname}_Bump",
step=step,
)
save_paths.append(map_Bump_save_path)
if map_Pm is not None:
map_Pm_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_metallic.{map_format}"
)
mtl_str += f"map_Pm texture_metallic.{map_format}\n"
self._save_grayscale_image(
map_Pm_save_path,
map_Pm,
data_range=(0, 1),
cmap=None,
name=f"{matname}_refl",
step=step,
)
save_paths.append(map_Pm_save_path)
if map_Pr is not None:
map_Pr_save_path = os.path.join(
os.path.dirname(mtl_save_path), f"texture_roughness.{map_format}"
)
mtl_str += f"map_Pr texture_roughness.{map_format}\n"
self._save_grayscale_image(
map_Pr_save_path,
map_Pr,
data_range=(0, 1),
cmap=None,
name=f"{matname}_Ns",
step=step,
)
save_paths.append(map_Pr_save_path)
with open(self.get_save_path(filename), "w") as f:
f.write(mtl_str)
return save_paths
def save_file(self, filename, src_path) -> str:
save_path = self.get_save_path(filename)
shutil.copyfile(src_path, save_path)
return save_path
def save_json(self, filename, payload) -> str:
save_path = self.get_save_path(filename)
with open(save_path, "w") as f:
f.write(json.dumps(payload))
return save_path
|