File size: 10,060 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
import contextlib
import importlib
import logging
import os
import sys
import time
import traceback
import pytorch_lightning as pl
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from pytorch_lightning.utilities.rank_zero import rank_zero_only
import craftsman
from craftsman.systems.base import BaseSystem
from craftsman.utils.callbacks import (
    CodeSnapshotCallback,
    ConfigSnapshotCallback,
    CustomProgressBar,
    ProgressCallback,
)
from craftsman.utils.config import ExperimentConfig, load_config
from craftsman.utils.misc import get_rank
from craftsman.utils.typing import Optional
class ColoredFilter(logging.Filter):
    """
    A logging filter to add color to certain log levels.
    """

    RESET = "\033[0m"
    RED = "\033[31m"
    GREEN = "\033[32m"
    YELLOW = "\033[33m"
    BLUE = "\033[34m"
    MAGENTA = "\033[35m"
    CYAN = "\033[36m"

    COLORS = {
        "WARNING": YELLOW,
        "INFO": GREEN,
        "DEBUG": BLUE,
        "CRITICAL": MAGENTA,
        "ERROR": RED,
    }

    RESET = "\x1b[0m"

    def __init__(self):
        super().__init__()

    def filter(self, record):
        if record.levelname in self.COLORS:
            color_start = self.COLORS[record.levelname]
            record.levelname = f"{color_start}[{record.levelname}]"
            record.msg = f"{record.msg}{self.RESET}"
        return True


def load_custom_module(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(
                module_name, module_path
            )
        else:
            module_spec = importlib.util.spec_from_file_location(
                module_name, os.path.join(module_path, "__init__.py")
            )

        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        return True
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
        return False


def load_custom_modules():
    node_paths = ["custom"]
    node_import_times = []
    if not os.path.exists("node_paths"):
        return
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if (
                os.path.isfile(module_path)
                and os.path.splitext(module_path)[1] != ".py"
            ):
                continue
            if module_path.endswith(".disabled"):
                continue
            time_before = time.perf_counter()
            success = load_custom_module(module_path)
            node_import_times.append(
                (time.perf_counter() - time_before, module_path, success)
            )

    if len(node_import_times) > 0:
        print("\nImport times for custom modules:")
        for n in sorted(node_import_times):
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
        print()


def main(args, extras) -> None:
    # set CUDA_VISIBLE_DEVICES if needed, then import pytorch-lightning
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    env_gpus_str = os.environ.get("CUDA_VISIBLE_DEVICES", None)
    env_gpus = list(env_gpus_str.split(",")) if env_gpus_str else []
    selected_gpus = [0]
    torch.set_float32_matmul_precision("high")

    # Always rely on CUDA_VISIBLE_DEVICES if specific GPU ID(s) are specified.
    # As far as Pytorch Lightning is concerned, we always use all available GPUs
    # (possibly filtered by CUDA_VISIBLE_DEVICES).
    devices = -1
    if len(env_gpus) > 0:
        n_gpus = len(env_gpus)
    else:
        selected_gpus = list(args.gpu.split(","))
        n_gpus = len(selected_gpus)
        print(f"Using {n_gpus} GPUs: {selected_gpus}")
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    if args.typecheck:
        from jaxtyping import install_import_hook

        install_import_hook("craftsman", "typeguard.typechecked")

    logger = logging.getLogger("pytorch_lightning")
    if args.verbose:
        logger.setLevel(logging.DEBUG)

    for handler in logger.handlers:
        if handler.stream == sys.stderr:  # type: ignore
            if not args.gradio:
                handler.setFormatter(logging.Formatter("%(levelname)s %(message)s"))
                handler.addFilter(ColoredFilter())
            else:
                handler.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))

    load_custom_modules()

    # parse YAML config to OmegaConf
    cfg: ExperimentConfig
    cfg = load_config(args.config, cli_args=extras, n_gpus=n_gpus)

    # set a different seed for each device
    pl.seed_everything(cfg.seed + get_rank(), workers=True)

    dm = craftsman.find(cfg.data_type)(cfg.data)
    system: BaseSystem = craftsman.find(cfg.system_type)(
        cfg.system, resumed=cfg.resume is not None
    )
    system.set_save_dir(os.path.join(cfg.trial_dir, "save"))

    if args.gradio:
        fh = logging.FileHandler(os.path.join(cfg.trial_dir, "logs"))
        fh.setLevel(logging.INFO)
        if args.verbose:
            fh.setLevel(logging.DEBUG)
        fh.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
        logger.addHandler(fh)

    callbacks = []
    if args.train:
        callbacks += [
            ModelCheckpoint(
                dirpath=os.path.join(cfg.trial_dir, "ckpts"), **cfg.checkpoint
            ),
            LearningRateMonitor(logging_interval="step"),
            CodeSnapshotCallback(
                os.path.join(cfg.trial_dir, "code"), use_version=False
            ),
            ConfigSnapshotCallback(
                args.config,
                cfg,
                os.path.join(cfg.trial_dir, "configs"),
                use_version=False,
            ),
        ]
        if args.gradio:
            callbacks += [
                ProgressCallback(save_path=os.path.join(cfg.trial_dir, "progress"))
            ]
        else:
            callbacks += [CustomProgressBar(refresh_rate=1)]

    def write_to_text(file, lines):
        with open(file, "w") as f:
            for line in lines:
                f.write(line + "\n")

    loggers = []
    if args.train:
        # make tensorboard logging dir to suppress warning
        rank_zero_only(
            lambda: os.makedirs(os.path.join(cfg.trial_dir, "tb_logs"), exist_ok=True)
        )()
        loggers += [
            TensorBoardLogger(cfg.trial_dir, name="tb_logs"),
            CSVLogger(cfg.trial_dir, name="csv_logs"),
        ] + system.get_loggers()
        rank_zero_only(
            lambda: write_to_text(
                os.path.join(cfg.trial_dir, "cmd.txt"),
                ["python " + " ".join(sys.argv), str(args)],
            )
        )()

    trainer = Trainer(
        callbacks=callbacks,
        logger=loggers,
        inference_mode=False,
        accelerator="gpu",
        devices=devices,
        # profiler="advanced",
        **cfg.trainer,
    )

    def set_system_status(system: BaseSystem, ckpt_path: Optional[str]):
        if ckpt_path is None:
            return
        ckpt = torch.load(ckpt_path, map_location="cpu")
        system.set_resume_status(ckpt["epoch"], ckpt["global_step"])
    if args.train:
        trainer.fit(system, datamodule=dm, ckpt_path=cfg.resume)
        trainer.test(system, datamodule=dm)
        if args.gradio:
            # also export assets if in gradio mode
            trainer.predict(system, datamodule=dm)
    elif args.validate:
        # manually set epoch and global_step as they cannot be automatically resumed
        set_system_status(system, cfg.resume)
        trainer.validate(system, datamodule=dm, ckpt_path=cfg.resume)
    elif args.test:
        # manually set epoch and global_step as they cannot be automatically resumed
        set_system_status(system, cfg.resume)
        trainer.test(system, datamodule=dm, ckpt_path=cfg.resume)
    elif args.export:
        set_system_status(system, cfg.resume)
        trainer.predict(system, datamodule=dm, ckpt_path=cfg.resume)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", required=True, help="path to config file")
    parser.add_argument(
        "--gpu",
        default="0",
        help="GPU(s) to be used. 0 means use the 1st available GPU. "
        "1,2 means use the 2nd and 3rd available GPU. "
        "If CUDA_VISIBLE_DEVICES is set before calling `launch.py`, "
        "this argument is ignored and all available GPUs are always used.",
    )

    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument("--train", action="store_true")
    group.add_argument("--validate", action="store_true")
    group.add_argument("--test", action="store_true")
    group.add_argument("--export", action="store_true")

    parser.add_argument(
        "--gradio", action="store_true", help="if true, run in gradio mode"
    )

    parser.add_argument(
        "--verbose", action="store_true", help="if true, set logging level to DEBUG"
    )

    parser.add_argument(
        "--typecheck",
        action="store_true",
        help="whether to enable dynamic type checking",
    )

    args, extras = parser.parse_known_args()

    if args.gradio:
        with contextlib.redirect_stdout(sys.stderr):
            main(args, extras)
    else:
        main(args, extras)