Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,031 Bytes
302c8a6 f5810c5 302c8a6 516314a 302c8a6 516314a 302c8a6 a70204b 302c8a6 df36cab 302c8a6 df36cab 302c8a6 f5810c5 302c8a6 9dd707f 302c8a6 1be4867 302c8a6 f5810c5 302c8a6 f5810c5 b425632 302c8a6 2711cda 302c8a6 9bc9474 302c8a6 9bc9474 1be4867 f5810c5 302c8a6 2711cda 302c8a6 f5810c5 2711cda 302c8a6 f5810c5 302c8a6 f5810c5 ef66f74 9bc9474 69d09cc 9bc9474 f5810c5 1656878 f5810c5 302c8a6 891b5b9 302c8a6 891b5b9 302c8a6 f5810c5 096ef9e f5810c5 9bc9474 f5810c5 096ef9e 1656878 e0da7fb f5810c5 e0da7fb f5810c5 302c8a6 f5810c5 2b55a44 302c8a6 096ef9e 60a7ee4 70f85a3 302c8a6 df36cab 302c8a6 10c831f 302c8a6 2711cda 302c8a6 891b5b9 302c8a6 2711cda 302c8a6 891b5b9 302c8a6 0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import spaces
import argparse
import os
import json
import torch
import sys
import time
import importlib
import numpy as np
from omegaconf import OmegaConf
from huggingface_hub import hf_hub_download
from collections import OrderedDict
import trimesh
import gradio as gr
from typing import Any
from einops import rearrange
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.join(proj_dir))
import tempfile
from apps.utils import *
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
_DESCRIPTION = '''
<div>
<span style="color: red;">Important: The ckpt models released have been primarily trained on character data, hence they are likely to exhibit superior performance in this category. We are also planning to release more advanced pretrained models in the future.</span>
<br>
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) which uses 3D Latent Set Diffusion Model that directly generates coarse meshes,
then a multi-view normal enhanced image generation model is used to refine the mesh.
We provide the coarse 3D diffusion part here.
<br>
If you found CraftsMan is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks!
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a>
<br>
*If you have your own multi-view images, you can directly upload it.
<a href='https://github.com/wyysf-98/CraftsMan/blob/main/tutorial.md' target='_blank'>Tutorial</a>
<a href='https://github.com/wyysf-98/CraftsMan/blob/main/tutorial_zh.md' target='_blank'>δ½Ώη¨ζη¨</a>
</div>
'''
_CITE_ = r"""
---
π **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{li2024craftsman,
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
journal = {arXiv preprint arXiv:2405.14979},
year = {2024},
}
```
π€ **Acknowledgements**
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
π **License**
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
π§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>.
"""
from apps.third_party.CRM.pipelines import TwoStagePipeline
from apps.third_party.LGM.pipeline_mvdream import MVDreamPipeline
from apps.third_party.Era3D.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline
from apps.third_party.Era3D.data.single_image_dataset import SingleImageDataset
import re
import os
import stat
RD, WD, XD = 4, 2, 1
BNS = [RD, WD, XD]
MDS = [
[stat.S_IRUSR, stat.S_IRGRP, stat.S_IROTH],
[stat.S_IWUSR, stat.S_IWGRP, stat.S_IWOTH],
[stat.S_IXUSR, stat.S_IXGRP, stat.S_IXOTH]
]
def chmod(path, mode):
if isinstance(mode, int):
mode = str(mode)
if not re.match("^[0-7]{1,3}$", mode):
raise Exception("mode does not conform to ^[0-7]{1,3}$ pattern")
mode = "{0:0>3}".format(mode)
mode_num = 0
for midx, m in enumerate(mode):
for bnidx, bn in enumerate(BNS):
if (int(m) & bn) > 0:
mode_num += MDS[bnidx][midx]
os.chmod(path, mode_num)
chmod(f"{parent_dir}/apps/third_party/InstantMeshes", "777")
device = None
model = None
cached_dir = None
generator = None
sys.path.append(f"apps/third_party/CRM")
crm_pipeline = None
sys.path.append(f"apps/third_party/LGM")
imgaedream_pipeline = None
sys.path.append(f"apps/third_party/Era3D")
era3d_pipeline = None
@spaces.GPU(duration=120)
def gen_mvimg(
mvimg_model, image, seed, guidance_scale, step, text, neg_text, elevation, backgroud_color
):
global device
if seed == 0:
seed = np.random.randint(1, 65535)
global generator
generator = torch.Generator(device)
generator.manual_seed(seed)
if mvimg_model == "CRM":
global crm_pipeline
crm_pipeline.set_seed(seed)
background = Image.new("RGBA", image.size, (127, 127, 127))
image = Image.alpha_composite(background, image)
mv_imgs = crm_pipeline(
image,
scale=guidance_scale,
step=step
)["stage1_images"]
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
elif mvimg_model == "ImageDream":
global imagedream_pipeline
background = Image.new("RGBA", image.size, backgroud_color)
image = Image.alpha_composite(background, image)
image = np.array(image).astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
mv_imgs = imagedream_pipeline(
text,
image,
negative_prompt=neg_text,
guidance_scale=guidance_scale,
num_inference_steps=step,
elevation=elevation,
generator=generator,
)
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
elif mvimg_model == "Era3D":
global era3d_pipeline
era3d_pipeline.to(device)
era3d_pipeline.unet.enable_xformers_memory_efficient_attention()
era3d_pipeline.set_progress_bar_config(disable=True)
crop_size = 420
batch = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white',
crop_size=crop_size, single_image=image, prompt_embeds_path='apps/third_party/Era3D/data/fixed_prompt_embeds_6view')[0]
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0)
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W)
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings']
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0)
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C")
imgs_in = imgs_in.to(dtype=torch.float16)
prompt_embeddings = prompt_embeddings.to(dtype=torch.float16)
mv_imgs = era3d_pipeline(
imgs_in,
None,
prompt_embeds=prompt_embeddings,
generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=step,
num_images_per_prompt=1,
**{'eta': 1.0}
).images
return mv_imgs[6], mv_imgs[8], mv_imgs[9], mv_imgs[10]
@spaces.GPU
def image2mesh(view_front: np.ndarray,
view_right: np.ndarray,
view_back: np.ndarray,
view_left: np.ndarray,
more: bool = False,
scheluder_name: str ="DDIMScheduler",
guidance_scale: int = 7.5,
steps: int = 50,
seed: int = 4,
octree_depth: int = 7):
sample_inputs = {
"mvimages": [[
Image.fromarray(view_front),
Image.fromarray(view_right),
Image.fromarray(view_back),
Image.fromarray(view_left)
]]
}
global model
latents = model.sample(
sample_inputs,
sample_times=1,
guidance_scale=guidance_scale,
return_intermediates=False,
steps=steps,
seed=seed
)[0]
# decode the latents to mesh
box_v = 1.1
mesh_outputs, _ = model.shape_model.extract_geometry(
latents,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth
)
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
# filepath = f"{cached_dir}/{time.time()}.obj"
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
mesh.export(filepath, include_normals=True)
if 'Remesh' in more:
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
print("Remeshing with Instant Meshes...")
# target_face_count = int(len(mesh.faces)/10)
target_face_count = 2000
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
os.system(command)
filepath = remeshed_filepath
# filepath = filepath.replace('.obj', '_remeshed.obj')
return filepath
if __name__=="__main__":
parser = argparse.ArgumentParser()
# parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",)
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir")
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
cached_dir = args.cached_dir
os.makedirs(args.cached_dir, exist_ok=True)
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
print(f"using device: {device}")
# for multi-view images generation
background_choice = OrderedDict({
"Alpha as Mask": "Alpha as Mask",
"Auto Remove Background": "Auto Remove Background",
"Original Image": "Original Image",
})
mvimg_model_config_list = [
"Era3D",
"CRM",
"ImageDream"
]
if "Era3D" in mvimg_model_config_list:
# cfg = load_config("apps/third_party/Era3D/configs/test_unclip-512-6view.yaml")
# schema = OmegaConf.structured(TestConfig)
# cfg = OmegaConf.merge(schema, cfg)
era3d_pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained(
'pengHTYX/MacLab-Era3D-512-6view',
dtype=torch.float16,
)
# enable xformers
# era3d_pipeline.unet.enable_xformers_memory_efficient_attention()
# era3d_pipeline.to(device)
if "CRM" in mvimg_model_config_list:
stage1_config = OmegaConf.load(f"apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
stage1_sampler_config = stage1_config.sampler
stage1_model_config = stage1_config.models
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
stage1_model_config.config = f"apps/third_party/CRM/" + stage1_model_config.config
crm_pipeline = TwoStagePipeline(
stage1_model_config,
stage1_sampler_config,
device=device,
dtype=torch.float16
)
if "ImageDream" in mvimg_model_config_list:
imagedream_pipeline = MVDreamPipeline.from_pretrained(
"ashawkey/imagedream-ipmv-diffusers", # remote weights
torch_dtype=torch.float16,
trust_remote_code=True,
)
# for 3D latent set diffusion
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/model.ckpt", repo_type="model")
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6-aligned-vae/config.yaml", repo_type="model")
# ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model-300k.ckpt", repo_type="model")
# config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model")
scheluder_dict = OrderedDict({
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
})
# main GUI
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
with gr.Column():
# input image
with gr.Row():
image_input = gr.Image(
label="Image Input",
image_mode="RGBA",
sources="upload",
type="pil",
)
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''')
with gr.Row():
seed = gr.Number(0, label='Seed', show_label=True)
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=list(mvimg_model_config_list))
more = gr.CheckboxGroup(["Remesh"], label="More", show_label=False)
@gr.render(inputs=mvimg_model)
def show_split(mvimg_model):
if mvimg_model == 'ImageDream':
# input prompt
text = gr.Textbox(label="Prompt (Opt.)", info="only works for ImageDream")
with gr.Accordion('Advanced options', open=False):
# negative prompt
neg_text = gr.Textbox(label="Negative Prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
# elevation
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
with gr.Row():
gr.Examples(
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")],
inputs=[image_input],
examples_per_page=8
)
with gr.Column(scale=4):
with gr.Row():
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
camera_position=(90.0, 90.0, 3.5),
interactive=False,
)
with gr.Row():
gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''')
with gr.Row():
view_front = gr.Image(label="Front", interactive=True, show_label=True)
view_right = gr.Image(label="Right", interactive=True, show_label=True)
view_back = gr.Image(label="Back", interactive=True, show_label=True)
view_left = gr.Image(label="Left", interactive=True, show_label=True)
with gr.Accordion('Advanced options', open=False):
with gr.Row(equal_height=True):
run_mv_btn = gr.Button('Only Generate 2D', interactive=True)
run_3d_btn = gr.Button('Only Generate 3D', interactive=True)
with gr.Accordion('Advanced options (2D)', open=False):
with gr.Row():
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=1.0,
step=0.05,
)
with gr.Row():
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True)
# backgroud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=True)
with gr.Row():
mvimg_guidance_scale = gr.Number(value=3.0, minimum=1, maximum=10, label="2D Guidance Scale")
mvimg_steps = gr.Number(value=30, minimum=20, maximum=100, label="2D Sample Steps")
with gr.Accordion('Advanced options (3D)', open=False):
with gr.Row():
guidance_scale = gr.Number(label="3D Guidance Scale", value=3.0, minimum=1.0, maximum=10.0)
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps")
with gr.Row():
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
gr.Markdown(_CITE_)
outputs = [output_model_obj]
rmbg = RMBG(device)
model = load_model(ckpt_path, config_path, device)
run_btn.click(fn=check_input_image, inputs=[image_input]
).success(
fn=rmbg.run,
inputs=[rmbg_type, image_input, foreground_ratio, background_choice, backgroud_color],
outputs=[image_input]
).success(
fn=gen_mvimg,
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color],
outputs=[view_front, view_right, view_back, view_left]
).success(
fn=image2mesh,
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth],
outputs=outputs,
api_name="generate_img2obj")
run_mv_btn.click(fn=gen_mvimg,
inputs=[mvimg_model, image_input, seed, mvimg_guidance_scale, mvimg_steps, text, neg_text, elevation, backgroud_color],
outputs=[view_front, view_right, view_back, view_left]
)
run_3d_btn.click(fn=image2mesh,
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, steps, seed, octree_depth],
outputs=outputs,
api_name="generate_img2obj")
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |