Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,379 Bytes
0f079b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch import distributed as tdist
from torch.nn import functional as F
import math
import mcubes
import numpy as np
from einops import repeat, rearrange
from skimage import measure
from craftsman.utils.base import BaseModule
from craftsman.utils.typing import *
from craftsman.utils.misc import get_world_size
from craftsman.utils.ops import generate_dense_grid_points
VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]
class FourierEmbedder(nn.Module):
def __init__(self,
num_freqs: int = 6,
logspace: bool = True,
input_dim: int = 3,
include_input: bool = True,
include_pi: bool = True) -> None:
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
num_freqs,
dtype=torch.float32
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (num_freqs - 1),
num_freqs,
dtype=torch.float32
)
if include_pi:
frequencies *= torch.pi
self.register_buffer("frequencies", frequencies, persistent=False)
self.include_input = include_input
self.num_freqs = num_freqs
self.out_dim = self.get_dims(input_dim)
def get_dims(self, input_dim):
temp = 1 if self.include_input or self.num_freqs == 0 else 0
out_dim = input_dim * (self.num_freqs * 2 + temp)
return out_dim
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.num_freqs > 0:
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
if self.include_input:
return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
else:
return torch.cat((embed.sin(), embed.cos()), dim=-1)
else:
return x
class LearnedFourierEmbedder(nn.Module):
def __init__(self, input_dim, dim):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
per_channel_dim = half_dim // input_dim
self.weights = nn.Parameter(torch.randn(per_channel_dim))
self.out_dim = self.get_dims(input_dim)
def forward(self, x):
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
return fouriered
def get_dims(self, input_dim):
return input_dim * (self.weights.shape[0] * 2 + 1)
class Sine(nn.Module):
def __init__(self, w0 = 1.):
super().__init__()
self.w0 = w0
def forward(self, x):
return torch.sin(self.w0 * x)
class Siren(nn.Module):
def __init__(
self,
in_dim,
out_dim,
w0 = 1.,
c = 6.,
is_first = False,
use_bias = True,
activation = None,
dropout = 0.
):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.is_first = is_first
weight = torch.zeros(out_dim, in_dim)
bias = torch.zeros(out_dim) if use_bias else None
self.init_(weight, bias, c = c, w0 = w0)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias) if use_bias else None
self.activation = Sine(w0) if activation is None else activation
self.dropout = nn.Dropout(dropout)
def init_(self, weight, bias, c, w0):
dim = self.in_dim
w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0)
weight.uniform_(-w_std, w_std)
if bias is not None:
bias.uniform_(-w_std, w_std)
def forward(self, x):
out = F.linear(x, self.weight, self.bias)
out = self.activation(out)
out = self.dropout(out)
return out
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, include_pi=True):
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
return nn.Identity(), input_dim
elif embed_type == "fourier":
embedder_obj = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi)
elif embed_type == "learned_fourier":
embedder_obj = LearnedFourierEmbedder(in_channels=input_dim, dim=num_freqs)
elif embed_type == "siren":
embedder_obj = Siren(in_dim=input_dim, out_dim=num_freqs * input_dim * 2 + input_dim)
elif embed_type == "hashgrid":
raise NotImplementedError
elif embed_type == "sphere_harmonic":
raise NotImplementedError
else:
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")
return embedder_obj
###################### AutoEncoder
class AutoEncoder(BaseModule):
@dataclass
class Config(BaseModule.Config):
pretrained_model_name_or_path: str = ""
num_latents: int = 256
embed_dim: int = 64
width: int = 768
cfg: Config
def configure(self) -> None:
super().configure()
def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
raise NotImplementedError
def decode(self, z: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True):
posterior = None
if self.cfg.embed_dim > 0:
moments = self.pre_kl(latents)
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1)
if sample_posterior:
kl_embed = posterior.sample()
else:
kl_embed = posterior.mode()
else:
kl_embed = latents
return kl_embed, posterior
def forward(self,
surface: torch.FloatTensor,
queries: torch.FloatTensor,
sample_posterior: bool = True):
shape_latents, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior)
latents = self.decode(kl_embed) # [B, num_latents, width]
logits = self.query(queries, latents) # [B,]
return shape_latents, latents, posterior, logits
def query(self, queries: torch.FloatTensor, latents: torch.FloatTensor) -> torch.FloatTensor:
raise NotImplementedError
@torch.no_grad()
def extract_geometry(self,
latents: torch.FloatTensor,
bounds: Union[Tuple[float], List[float], float] = (-1.05, -1.05, -1.05, 1.05, 1.05, 1.05),
octree_depth: int = 8,
num_chunks: int = 10000,
):
if isinstance(bounds, float):
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds]
bbox_min = np.array(bounds[0:3])
bbox_max = np.array(bounds[3:6])
bbox_size = bbox_max - bbox_min
xyz_samples, grid_size, length = generate_dense_grid_points(
bbox_min=bbox_min,
bbox_max=bbox_max,
octree_depth=octree_depth,
indexing="ij"
)
xyz_samples = torch.FloatTensor(xyz_samples)
batch_size = latents.shape[0]
batch_logits = []
for start in range(0, xyz_samples.shape[0], num_chunks):
queries = xyz_samples[start: start + num_chunks, :].to(latents)
batch_queries = repeat(queries, "p c -> b p c", b=batch_size)
logits = self.query(batch_queries, latents)
batch_logits.append(logits.cpu())
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float().numpy()
mesh_v_f = []
has_surface = np.zeros((batch_size,), dtype=np.bool_)
for i in range(batch_size):
try:
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner")
# vertices, faces = mcubes.marching_cubes(grid_logits[i], 0)
vertices = vertices / grid_size * bbox_size + bbox_min
faces = faces[:, [2, 1, 0]]
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces)))
has_surface[i] = True
except:
mesh_v_f.append((None, None))
has_surface[i] = False
return mesh_v_f, has_surface
class DiagonalGaussianDistribution(object):
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1):
self.feat_dim = feat_dim
self.parameters = parameters
if isinstance(parameters, list):
self.mean = parameters[0]
self.logvar = parameters[1]
else:
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean)
def sample(self):
x = self.mean + self.std * torch.randn_like(self.mean)
return x
def kl(self, other=None, dims=(1, 2)):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.mean(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=dims)
else:
return 0.5 * torch.mean(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=dims)
def nll(self, sample, dims=(1, 2)):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
|