File size: 13,612 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c594797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from dataclasses import dataclass
import math

import torch
import torch.nn as nn
from einops import repeat, rearrange
from transformers import CLIPModel

import craftsman
from craftsman.models.transformers.perceiver_1d import Perceiver
from craftsman.models.transformers.attention import ResidualCrossAttentionBlock
from craftsman.utils.checkpoint import checkpoint
from craftsman.utils.base import BaseModule
from craftsman.utils.typing import *

from .utils import AutoEncoder, FourierEmbedder, get_embedder

class PerceiverCrossAttentionEncoder(nn.Module):
    def __init__(self,
                 use_downsample: bool,
                 num_latents: int,
                 embedder: FourierEmbedder,
                 point_feats: int,
                 embed_point_feats: bool,
                 width: int,
                 heads: int,
                 layers: int,
                 init_scale: float = 0.25,
                 qkv_bias: bool = True,
                 use_ln_post: bool = False,
                 use_flash: bool = False,
                 use_checkpoint: bool = False):

        super().__init__()

        self.use_checkpoint = use_checkpoint
        self.num_latents = num_latents
        self.use_downsample = use_downsample
        self.embed_point_feats = embed_point_feats

        if not self.use_downsample:
            self.query = nn.Parameter(torch.randn((num_latents, width)) * 0.02)

        self.embedder = embedder
        if self.embed_point_feats:
            self.input_proj = nn.Linear(self.embedder.out_dim * 2, width)
        else:
            self.input_proj = nn.Linear(self.embedder.out_dim + point_feats, width)

        self.cross_attn = ResidualCrossAttentionBlock(
            width=width,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash,
        )

        self.self_attn = Perceiver(
            n_ctx=num_latents,
            width=width,
            layers=layers,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash,
            use_checkpoint=False
        )

        if use_ln_post:
            self.ln_post = nn.LayerNorm(width)
        else:
            self.ln_post = None

    def _forward(self, pc, feats):
        """

        Args:
            pc (torch.FloatTensor): [B, N, 3]
            feats (torch.FloatTensor or None): [B, N, C]

        Returns:

        """

        bs, N, D = pc.shape

        data = self.embedder(pc)
        if feats is not None:
            if self.embed_point_feats:
                feats = self.embedder(feats)
            data = torch.cat([data, feats], dim=-1)
        data = self.input_proj(data)

        if self.use_downsample:
            ###### fps
            from torch_cluster import fps
            flattened = pc.view(bs*N, D)

            batch = torch.arange(bs).to(pc.device)
            batch = torch.repeat_interleave(batch, N)

            pos = flattened

            ratio = 1.0 * self.num_latents / N

            idx = fps(pos, batch, ratio=ratio)

            query = data.view(bs*N, -1)[idx].view(bs, -1, data.shape[-1])
        else:
            query = self.query
            query = repeat(query, "m c -> b m c", b=bs)

        latents = self.cross_attn(query, data)
        latents = self.self_attn(latents)

        if self.ln_post is not None:
            latents = self.ln_post(latents)

        return latents

    def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None):
        """

        Args:
            pc (torch.FloatTensor): [B, N, 3]
            feats (torch.FloatTensor or None): [B, N, C]

        Returns:
            dict
        """

        return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint)


class PerceiverCrossAttentionDecoder(nn.Module):

    def __init__(self,
                 num_latents: int,
                 out_dim: int,
                 embedder: FourierEmbedder,
                 width: int,
                 heads: int,
                 init_scale: float = 0.25,
                 qkv_bias: bool = True,
                 use_flash: bool = False,
                 use_checkpoint: bool = False):

        super().__init__()

        self.use_checkpoint = use_checkpoint
        self.embedder = embedder

        self.query_proj = nn.Linear(self.embedder.out_dim, width)

        self.cross_attn_decoder = ResidualCrossAttentionBlock(
            n_data=num_latents,
            width=width,
            heads=heads,
            init_scale=init_scale,
            qkv_bias=qkv_bias,
            use_flash=use_flash
        )

        self.ln_post = nn.LayerNorm(width)
        self.output_proj = nn.Linear(width, out_dim)

    def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
        queries = self.query_proj(self.embedder(queries))
        x = self.cross_attn_decoder(queries, latents)
        x = self.ln_post(x)
        x = self.output_proj(x)
        return x

    def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor):
        return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint)


@craftsman.register("michelangelo-autoencoder")
class MichelangeloAutoencoder(AutoEncoder):
    r"""
    A VAE model for encoding shapes into latents and decoding latent representations into shapes.
    """

    @dataclass
    class Config(BaseModule.Config):
        pretrained_model_name_or_path: str = ""
        use_downsample: bool = False
        num_latents: int = 256
        point_feats: int = 0
        embed_point_feats: bool = False
        out_dim: int = 1
        embed_dim: int = 64
        embed_type: str = "fourier"
        num_freqs: int = 8
        include_pi: bool = True
        width: int = 768
        heads: int = 12
        num_encoder_layers: int = 8
        num_decoder_layers: int = 16
        init_scale: float = 0.25
        qkv_bias: bool = True
        use_ln_post: bool = False
        use_flash: bool = False
        use_checkpoint: bool = True

    cfg: Config

    def configure(self) -> None:
        super().configure()

        self.embedder = get_embedder(embed_type=self.cfg.embed_type, num_freqs=self.cfg.num_freqs, include_pi=self.cfg.include_pi)

        # encoder
        self.cfg.init_scale = self.cfg.init_scale * math.sqrt(1.0 / self.cfg.width)
        self.encoder = PerceiverCrossAttentionEncoder(
            use_downsample=self.cfg.use_downsample,
            embedder=self.embedder,
            num_latents=self.cfg.num_latents,
            point_feats=self.cfg.point_feats,
            embed_point_feats=self.cfg.embed_point_feats,
            width=self.cfg.width,
            heads=self.cfg.heads,
            layers=self.cfg.num_encoder_layers,
            init_scale=self.cfg.init_scale,
            qkv_bias=self.cfg.qkv_bias,
            use_ln_post=self.cfg.use_ln_post,
            use_flash=self.cfg.use_flash,
            use_checkpoint=self.cfg.use_checkpoint
        )

        if self.cfg.embed_dim > 0:
            # VAE embed
            self.pre_kl = nn.Linear(self.cfg.width, self.cfg.embed_dim * 2)
            self.post_kl = nn.Linear(self.cfg.embed_dim, self.cfg.width)
            self.latent_shape = (self.cfg.num_latents, self.cfg.embed_dim)
        else:
            self.latent_shape = (self.cfg.num_latents, self.cfg.width)

        self.transformer = Perceiver(
            n_ctx=self.cfg.num_latents,
            width=self.cfg.width,
            layers=self.cfg.num_decoder_layers,
            heads=self.cfg.heads,
            init_scale=self.cfg.init_scale,
            qkv_bias=self.cfg.qkv_bias,
            use_flash=self.cfg.use_flash,
            use_checkpoint=self.cfg.use_checkpoint
        )

        # decoder
        self.decoder = PerceiverCrossAttentionDecoder(
            embedder=self.embedder,
            out_dim=self.cfg.out_dim,
            num_latents=self.cfg.num_latents,
            width=self.cfg.width,
            heads=self.cfg.heads,
            init_scale=self.cfg.init_scale,
            qkv_bias=self.cfg.qkv_bias,
            use_flash=self.cfg.use_flash,
            use_checkpoint=self.cfg.use_checkpoint
        )

        if self.cfg.pretrained_model_name_or_path != "":
            print(f"Loading pretrained model from {self.cfg.pretrained_model_name_or_path}")
            pretrained_ckpt = torch.load(self.cfg.pretrained_model_name_or_path, map_location="cpu")
            if 'state_dict' in pretrained_ckpt:
                _pretrained_ckpt = {}
                for k, v in pretrained_ckpt['state_dict'].items():
                    if k.startswith('shape_model.'):
                        _pretrained_ckpt[k.replace('shape_model.', '')] = v
                pretrained_ckpt = _pretrained_ckpt
            self.load_state_dict(pretrained_ckpt, strict=True)
            
    
    def encode(self,
               surface: torch.FloatTensor,
               sample_posterior: bool = True):
        """
        Args:
            surface (torch.FloatTensor): [B, N, 3+C]
            sample_posterior (bool):

        Returns:
            shape_latents (torch.FloatTensor): [B, num_latents, width]
            kl_embed (torch.FloatTensor): [B, num_latents, embed_dim]
            posterior (DiagonalGaussianDistribution or None):
        """
        assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
            Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
        
        pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3    
        shape_latents = self.encoder(pc, feats) # B, num_latents, width
        kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior)  # B, num_latents, embed_dim

        return shape_latents, kl_embed, posterior


    def decode(self, 
               latents: torch.FloatTensor):
        """
        Args:
            latents (torch.FloatTensor): [B, embed_dim]

        Returns:
            latents (torch.FloatTensor): [B, embed_dim]
        """
        latents = self.post_kl(latents) # [B, num_latents, embed_dim] -> [B, num_latents, width]

        return self.transformer(latents)


    def query(self, 
              queries: torch.FloatTensor, 
              latents: torch.FloatTensor):
        """
        Args:
            queries (torch.FloatTensor): [B, N, 3]
            latents (torch.FloatTensor): [B, embed_dim]

        Returns:
            logits (torch.FloatTensor): [B, N], occupancy logits
        """

        logits = self.decoder(queries, latents).squeeze(-1)

        return logits




@craftsman.register("michelangelo-aligned-autoencoder")
class MichelangeloAlignedAutoencoder(MichelangeloAutoencoder):
    r"""
    A VAE model for encoding shapes into latents and decoding latent representations into shapes.
    """
    @dataclass
    class Config(MichelangeloAutoencoder.Config):
        clip_model_version: Optional[str] = None

    cfg: Config

    def configure(self) -> None:
        if self.cfg.clip_model_version is not None:
            self.clip_model: CLIPModel = CLIPModel.from_pretrained(self.cfg.clip_model_version)
            self.projection = nn.Parameter(torch.empty(self.cfg.width, self.clip_model.projection_dim))
            self.logit_scale = torch.exp(self.clip_model.logit_scale.data)
            nn.init.normal_(self.projection, std=self.clip_model.projection_dim ** -0.5)
        else:
            self.projection = nn.Parameter(torch.empty(self.cfg.width, 768))
            nn.init.normal_(self.projection, std=768 ** -0.5)

        self.cfg.num_latents = self.cfg.num_latents + 1

        super().configure()

    def encode(self,
               surface: torch.FloatTensor,
               sample_posterior: bool = True):
        """
        Args:
            surface (torch.FloatTensor): [B, N, 3+C]
            sample_posterior (bool):

        Returns:
            latents (torch.FloatTensor)
            posterior (DiagonalGaussianDistribution or None):
        """
        assert surface.shape[-1] == 3 + self.cfg.point_feats, f"\
            Expected {3 + self.cfg.point_feats} channels, got {surface.shape[-1]}"
        
        pc, feats = surface[..., :3], surface[..., 3:] # B, n_samples, 3    
        shape_latents = self.encoder(pc, feats) # B, num_latents, width
        shape_embeds = shape_latents[:, 0]  # B, width
        shape_latents = shape_latents[:, 1:] # B, num_latents-1, width
        kl_embed, posterior = self.encode_kl_embed(shape_latents, sample_posterior)  # B, num_latents, embed_dim

        shape_embeds = shape_embeds @ self.projection
        return shape_embeds, kl_embed, posterior
    
    def forward(self,
                surface: torch.FloatTensor,
                queries: torch.FloatTensor,
                sample_posterior: bool = True):
        """
        Args:
            surface (torch.FloatTensor): [B, N, 3+C]
            queries (torch.FloatTensor): [B, P, 3]
            sample_posterior (bool):

        Returns:
            shape_embeds (torch.FloatTensor): [B, width]
            latents (torch.FloatTensor): [B, num_latents, embed_dim]
            posterior (DiagonalGaussianDistribution or None).
            logits (torch.FloatTensor): [B, P]
        """

        shape_embeds, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior)

        latents = self.decode(kl_embed) # [B, num_latents - 1, width]

        logits = self.query(queries, latents) # [B,]

        return shape_embeds, latents, posterior, logits