File size: 19,573 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

import craftsman
from craftsman.utils.typing import *


def dot(x, y):
    return torch.sum(x * y, -1, keepdim=True)


class Mesh:
    def __init__(
        self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], **kwargs
    ) -> None:
        self.v_pos: Float[Tensor, "Nv 3"] = v_pos
        self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx
        self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None
        self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None
        self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None
        self._t_tex_idx: Optional[Float[Tensor, "Nf 3"]] = None
        self._v_rgb: Optional[Float[Tensor, "Nv 3"]] = None
        self._edges: Optional[Integer[Tensor, "Ne 2"]] = None
        self.extras: Dict[str, Any] = {}
        for k, v in kwargs.items():
            self.add_extra(k, v)

    def add_extra(self, k, v):
        self.extras[k] = v

    def remove_outlier(self, outlier_n_faces_threshold: Union[int, float]):
        if self.requires_grad:
            craftsman.debug("Mesh is differentiable, not removing outliers")
            return self

        # use trimesh to first split the mesh into connected components
        # then remove the components with less than n_face_threshold faces
        import trimesh

        # construct a trimesh object
        mesh = trimesh.Trimesh(
            vertices=self.v_pos.detach().cpu().numpy(),
            faces=self.t_pos_idx.detach().cpu().numpy(),
        )

        # split the mesh into connected components
        components = mesh.split(only_watertight=False)
        # log the number of faces in each component
        craftsman.debug(
            "Mesh has {} components, with faces: {}".format(
                len(components), [c.faces.shape[0] for c in components]
            )
        )

        n_faces_threshold: int
        if isinstance(outlier_n_faces_threshold, float):
            # set the threshold to the number of faces in the largest component multiplied by outlier_n_faces_threshold
            n_faces_threshold = int(
                max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold
            )
        else:
            # set the threshold directly to outlier_n_faces_threshold
            n_faces_threshold = outlier_n_faces_threshold

        # log the threshold
        craftsman.debug(
            "Removing components with less than {} faces".format(n_faces_threshold)
        )

        # remove the components with less than n_face_threshold faces
        components = [c for c in components if c.faces.shape[0] >= n_faces_threshold]

        # log the number of faces in each component after removing outliers
        craftsman.debug(
            "Mesh has {} components after removing outliers, with faces: {}".format(
                len(components), [c.faces.shape[0] for c in components]
            )
        )
        # merge the components
        mesh = trimesh.util.concatenate(components)

        # convert back to our mesh format
        v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos)
        t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx)

        clean_mesh = Mesh(v_pos, t_pos_idx)
        # keep the extras unchanged

        if len(self.extras) > 0:
            clean_mesh.extras = self.extras
            craftsman.debug(
                f"The following extra attributes are inherited from the original mesh unchanged: {list(self.extras.keys())}"
            )
        return clean_mesh

    @property
    def requires_grad(self):
        return self.v_pos.requires_grad

    @property
    def v_nrm(self):
        if self._v_nrm is None:
            self._v_nrm = self._compute_vertex_normal()
        return self._v_nrm

    @property
    def v_tng(self):
        if self._v_tng is None:
            self._v_tng = self._compute_vertex_tangent()
        return self._v_tng

    @property
    def v_tex(self):
        if self._v_tex is None:
            self._v_tex, self._t_tex_idx = self._unwrap_uv()
        return self._v_tex

    @property
    def t_tex_idx(self):
        if self._t_tex_idx is None:
            self._v_tex, self._t_tex_idx = self._unwrap_uv()
        return self._t_tex_idx

    @property
    def v_rgb(self):
        return self._v_rgb

    @property
    def edges(self):
        if self._edges is None:
            self._edges = self._compute_edges()
        return self._edges

    def _compute_vertex_normal(self):
        i0 = self.t_pos_idx[:, 0]
        i1 = self.t_pos_idx[:, 1]
        i2 = self.t_pos_idx[:, 2]

        v0 = self.v_pos[i0, :]
        v1 = self.v_pos[i1, :]
        v2 = self.v_pos[i2, :]

        face_normals = torch.cross(v1 - v0, v2 - v0)

        # Splat face normals to vertices
        v_nrm = torch.zeros_like(self.v_pos)
        v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)

        # Normalize, replace zero (degenerated) normals with some default value
        v_nrm = torch.where(
            dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
        )
        v_nrm = F.normalize(v_nrm, dim=1)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(v_nrm))

        return v_nrm

    def _compute_vertex_tangent(self):
        vn_idx = [None] * 3
        pos = [None] * 3
        tex = [None] * 3
        for i in range(0, 3):
            pos[i] = self.v_pos[self.t_pos_idx[:, i]]
            tex[i] = self.v_tex[self.t_tex_idx[:, i]]
            # t_nrm_idx is always the same as t_pos_idx
            vn_idx[i] = self.t_pos_idx[:, i]

        tangents = torch.zeros_like(self.v_nrm)
        tansum = torch.zeros_like(self.v_nrm)

        # Compute tangent space for each triangle
        uve1 = tex[1] - tex[0]
        uve2 = tex[2] - tex[0]
        pe1 = pos[1] - pos[0]
        pe2 = pos[2] - pos[0]

        nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2]
        denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1]

        # Avoid division by zero for degenerated texture coordinates
        tang = nom / torch.where(
            denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)
        )

        # Update all 3 vertices
        for i in range(0, 3):
            idx = vn_idx[i][:, None].repeat(1, 3)
            tangents.scatter_add_(0, idx, tang)  # tangents[n_i] = tangents[n_i] + tang
            tansum.scatter_add_(
                0, idx, torch.ones_like(tang)
            )  # tansum[n_i] = tansum[n_i] + 1
        tangents = tangents / tansum

        # Normalize and make sure tangent is perpendicular to normal
        tangents = F.normalize(tangents, dim=1)
        tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(tangents))

        return tangents

    def _unwrap_uv(
        self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {}
    ):
        craftsman.info("Using xatlas to perform UV unwrapping, may take a while ...")

        import xatlas

        atlas = xatlas.Atlas()
        atlas.add_mesh(
            self.v_pos.detach().cpu().numpy(),
            self.t_pos_idx.cpu().numpy(),
        )
        co = xatlas.ChartOptions()
        po = xatlas.PackOptions()
        for k, v in xatlas_chart_options.items():
            setattr(co, k, v)
        for k, v in xatlas_pack_options.items():
            setattr(po, k, v)
            
        setattr(co, 'max_cost', 2.0)
        setattr(po, 'resolution', 4096)
        
        atlas.generate(co, po, verbose=True)
        vmapping, indices, uvs = atlas.get_mesh(0)
        vmapping = (
            torch.from_numpy(
                vmapping.astype(np.uint64, casting="same_kind").view(np.int64)
            )
            .to(self.v_pos.device)
            .long()
        )
        uvs = torch.from_numpy(uvs).to(self.v_pos.device).float()
        indices = (
            torch.from_numpy(
                indices.astype(np.uint64, casting="same_kind").view(np.int64)
            )
            .to(self.v_pos.device)
            .long()
        )
        return uvs, indices

    def unwrap_uv(
        self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {}
    ):
        self._v_tex, self._t_tex_idx = self._unwrap_uv(
            xatlas_chart_options, xatlas_pack_options
        )

    def set_vertex_color(self, v_rgb):
        assert v_rgb.shape[0] == self.v_pos.shape[0]
        self._v_rgb = v_rgb

    def _compute_edges(self):
        # Compute edges
        edges = torch.cat(
            [
                self.t_pos_idx[:, [0, 1]],
                self.t_pos_idx[:, [1, 2]],
                self.t_pos_idx[:, [2, 0]],
            ],
            dim=0,
        )
        edges = edges.sort()[0]
        edges = torch.unique(edges, dim=0)
        return edges

    def normal_consistency(self) -> Float[Tensor, ""]:
        edge_nrm: Float[Tensor, "Ne 2 3"] = self.v_nrm[self.edges]
        nc = (
            1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1)
        ).mean()
        return nc

    def _laplacian_uniform(self):
        # from stable-dreamfusion
        # https://github.com/ashawkey/stable-dreamfusion/blob/8fb3613e9e4cd1ded1066b46e80ca801dfb9fd06/nerf/renderer.py#L224
        verts, faces = self.v_pos, self.t_pos_idx

        V = verts.shape[0]
        F = faces.shape[0]

        # Neighbor indices
        ii = faces[:, [1, 2, 0]].flatten()
        jj = faces[:, [2, 0, 1]].flatten()
        adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique(
            dim=1
        )
        adj_values = torch.ones(adj.shape[1]).to(verts)

        # Diagonal indices
        diag_idx = adj[0]

        # Build the sparse matrix
        idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1)
        values = torch.cat((-adj_values, adj_values))

        # The coalesce operation sums the duplicate indices, resulting in the
        # correct diagonal
        return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce()

    def laplacian(self) -> Float[Tensor, ""]:
        with torch.no_grad():
            L = self._laplacian_uniform()
        loss = L.mm(self.v_pos)
        loss = loss.norm(dim=1)
        loss = loss.mean()
        return loss
        
class IsosurfaceHelper(nn.Module):
    points_range: Tuple[float, float] = (0, 1)

    @property
    def grid_vertices(self) -> Float[Tensor, "N 3"]:
        raise NotImplementedError


class MarchingCubeCPUHelper(IsosurfaceHelper):
    def __init__(self, resolution: int) -> None:
        super().__init__()
        self.resolution = resolution
        import mcubes

        self.mc_func: Callable = mcubes.marching_cubes
        self._grid_vertices: Optional[Float[Tensor, "N3 3"]] = None
        self._dummy: Float[Tensor, "..."]
        self.register_buffer(
            "_dummy", torch.zeros(0, dtype=torch.float32), persistent=False
        )

    @property
    def grid_vertices(self) -> Float[Tensor, "N3 3"]:
        if self._grid_vertices is None:
            # keep the vertices on CPU so that we can support very large resolution
            x, y, z = (
                torch.linspace(*self.points_range, self.resolution),
                torch.linspace(*self.points_range, self.resolution),
                torch.linspace(*self.points_range, self.resolution),
            )
            x, y, z = torch.meshgrid(x, y, z, indexing="ij")
            verts = torch.cat(
                [x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)], dim=-1
            ).reshape(-1, 3)
            self._grid_vertices = verts
        return self._grid_vertices

    def forward(
        self,
        level: Float[Tensor, "N3 1"],
        deformation: Optional[Float[Tensor, "N3 3"]] = None,
    ) -> Mesh:
        if deformation is not None:
            craftsman.warn(
                f"{self.__class__.__name__} does not support deformation. Ignoring."
            )
        level = -level.view(self.resolution, self.resolution, self.resolution)
        v_pos, t_pos_idx = self.mc_func(
            level.detach().cpu().numpy(), 0.0
        )  # transform to numpy
        v_pos, t_pos_idx = (
            torch.from_numpy(v_pos).float().to(self._dummy.device),
            torch.from_numpy(t_pos_idx.astype(np.int64)).long().to(self._dummy.device),
        )  # transform back to torch tensor on CUDA
        v_pos = v_pos / (self.resolution - 1.0)
        return Mesh(v_pos=v_pos, t_pos_idx=t_pos_idx)


class MarchingTetrahedraHelper(IsosurfaceHelper):
    def __init__(self, resolution: int, tets_path: str):
        super().__init__()
        self.resolution = resolution
        self.tets_path = tets_path

        self.triangle_table: Float[Tensor, "..."]
        self.register_buffer(
            "triangle_table",
            torch.as_tensor(
                [
                    [-1, -1, -1, -1, -1, -1],
                    [1, 0, 2, -1, -1, -1],
                    [4, 0, 3, -1, -1, -1],
                    [1, 4, 2, 1, 3, 4],
                    [3, 1, 5, -1, -1, -1],
                    [2, 3, 0, 2, 5, 3],
                    [1, 4, 0, 1, 5, 4],
                    [4, 2, 5, -1, -1, -1],
                    [4, 5, 2, -1, -1, -1],
                    [4, 1, 0, 4, 5, 1],
                    [3, 2, 0, 3, 5, 2],
                    [1, 3, 5, -1, -1, -1],
                    [4, 1, 2, 4, 3, 1],
                    [3, 0, 4, -1, -1, -1],
                    [2, 0, 1, -1, -1, -1],
                    [-1, -1, -1, -1, -1, -1],
                ],
                dtype=torch.long,
            ),
            persistent=False,
        )
        self.num_triangles_table: Integer[Tensor, "..."]
        self.register_buffer(
            "num_triangles_table",
            torch.as_tensor(
                [0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long
            ),
            persistent=False,
        )
        self.base_tet_edges: Integer[Tensor, "..."]
        self.register_buffer(
            "base_tet_edges",
            torch.as_tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long),
            persistent=False,
        )

        tets = np.load(self.tets_path)
        self._grid_vertices: Float[Tensor, "..."]
        self.register_buffer(
            "_grid_vertices",
            torch.from_numpy(tets["vertices"]).float(),
            persistent=False,
        )
        self.indices: Integer[Tensor, "..."]
        self.register_buffer(
            "indices", torch.from_numpy(tets["indices"]).long(), persistent=False
        )

        self._all_edges: Optional[Integer[Tensor, "Ne 2"]] = None

    def normalize_grid_deformation(
        self, grid_vertex_offsets: Float[Tensor, "Nv 3"]
    ) -> Float[Tensor, "Nv 3"]:
        return (
            (self.points_range[1] - self.points_range[0])
            / (self.resolution)  # half tet size is approximately 1 / self.resolution
            * torch.tanh(grid_vertex_offsets)
        )  # FIXME: hard-coded activation

    @property
    def grid_vertices(self) -> Float[Tensor, "Nv 3"]:
        return self._grid_vertices

    @property
    def all_edges(self) -> Integer[Tensor, "Ne 2"]:
        if self._all_edges is None:
            # compute edges on GPU, or it would be VERY SLOW (basically due to the unique operation)
            edges = torch.tensor(
                [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3],
                dtype=torch.long,
                device=self.indices.device,
            )
            _all_edges = self.indices[:, edges].reshape(-1, 2)
            _all_edges_sorted = torch.sort(_all_edges, dim=1)[0]
            _all_edges = torch.unique(_all_edges_sorted, dim=0)
            self._all_edges = _all_edges
        return self._all_edges

    def sort_edges(self, edges_ex2):
        with torch.no_grad():
            order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
            order = order.unsqueeze(dim=1)

            a = torch.gather(input=edges_ex2, index=order, dim=1)
            b = torch.gather(input=edges_ex2, index=1 - order, dim=1)

        return torch.stack([a, b], -1)

    def _forward(self, pos_nx3, sdf_n, tet_fx4):
        with torch.no_grad():
            occ_n = sdf_n > 0
            occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
            occ_sum = torch.sum(occ_fx4, -1)
            valid_tets = (occ_sum > 0) & (occ_sum < 4)
            occ_sum = occ_sum[valid_tets]

            # find all vertices
            all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2)
            all_edges = self.sort_edges(all_edges)
            unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)

            unique_edges = unique_edges.long()
            mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
            mapping = (
                torch.ones(
                    (unique_edges.shape[0]), dtype=torch.long, device=pos_nx3.device
                )
                * -1
            )
            mapping[mask_edges] = torch.arange(
                mask_edges.sum(), dtype=torch.long, device=pos_nx3.device
            )
            idx_map = mapping[idx_map]  # map edges to verts

            interp_v = unique_edges[mask_edges]
        edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
        edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
        edges_to_interp_sdf[:, -1] *= -1

        denominator = edges_to_interp_sdf.sum(1, keepdim=True)

        edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
        verts = (edges_to_interp * edges_to_interp_sdf).sum(1)

        idx_map = idx_map.reshape(-1, 6)

        v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=pos_nx3.device))
        tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
        num_triangles = self.num_triangles_table[tetindex]

        # Generate triangle indices
        faces = torch.cat(
            (
                torch.gather(
                    input=idx_map[num_triangles == 1],
                    dim=1,
                    index=self.triangle_table[tetindex[num_triangles == 1]][:, :3],
                ).reshape(-1, 3),
                torch.gather(
                    input=idx_map[num_triangles == 2],
                    dim=1,
                    index=self.triangle_table[tetindex[num_triangles == 2]][:, :6],
                ).reshape(-1, 3),
            ),
            dim=0,
        )

        return verts, faces

    def forward(
        self,
        level: Float[Tensor, "N3 1"],
        deformation: Optional[Float[Tensor, "N3 3"]] = None,
    ) -> Mesh:
        if deformation is not None:
            grid_vertices = self.grid_vertices + self.normalize_grid_deformation(
                deformation
            )
        else:
            grid_vertices = self.grid_vertices

        v_pos, t_pos_idx = self._forward(grid_vertices, level, self.indices)

        mesh = Mesh(
            v_pos=v_pos,
            t_pos_idx=t_pos_idx,
            # extras
            grid_vertices=grid_vertices,
            tet_edges=self.all_edges,
            grid_level=level,
            grid_deformation=deformation,
        )

        return mesh