Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import json | |
import torch | |
import sys | |
import time | |
import importlib | |
import numpy as np | |
from omegaconf import OmegaConf | |
from huggingface_hub import hf_hub_download | |
from collections import OrderedDict | |
import trimesh | |
from einops import repeat, rearrange | |
import pytorch_lightning as pl | |
from typing import Dict, Optional, Tuple, List | |
import gradio as gr | |
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
sys.path.append(os.path.join(proj_dir)) | |
import tempfile | |
import craftsman | |
from craftsman.systems.base import BaseSystem | |
from craftsman.utils.config import ExperimentConfig, load_config | |
from apps.utils import * | |
from apps.mv_models import GenMVImage | |
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' | |
_DESCRIPTION = ''' | |
<div> | |
Select or upload a image, then just click 'Generate'. | |
<br> | |
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes, | |
then a multi-view normal enhanced image generation model is used to refine the mesh. | |
We provide the coarse 3D diffusion part here. | |
<br> | |
If you found Crafts is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks! | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a> | |
<br> | |
*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct mesh. | |
<br> | |
*If you have your own multi-view images, you can directly upload it. | |
</div> | |
''' | |
_CITE_ = r""" | |
--- | |
π **Citation** | |
If you find our work useful for your research or applications, please cite using this bibtex: | |
```bibtex | |
@article{craftsman, | |
author = {Weiyu Li and Jiarui Liu and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, | |
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, | |
journal = {arxiv:xxx}, | |
year = {2024}, | |
} | |
``` | |
π€ **Acknowledgements** | |
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work. | |
π **License** | |
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. | |
π§ **Contact** | |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>. | |
""" | |
model = None | |
cached_dir = None | |
def image2mesh(view_front: np.ndarray, | |
view_right: np.ndarray, | |
view_back: np.ndarray, | |
view_left: np.ndarray, | |
more: bool = False, | |
scheluder_name: str ="DDIMScheduler", | |
guidance_scale: int = 7.5, | |
seed: int = 4, | |
octree_depth: int = 7): | |
sample_inputs = { | |
"mvimages": [[ | |
Image.fromarray(view_front), | |
Image.fromarray(view_right), | |
Image.fromarray(view_back), | |
Image.fromarray(view_left) | |
]] | |
} | |
global model | |
latents = model.sample( | |
sample_inputs, | |
sample_times=1, | |
guidance_scale=guidance_scale, | |
return_intermediates=False, | |
seed=seed | |
)[0] | |
# decode the latents to mesh | |
box_v = 1.1 | |
mesh_outputs, _ = model.shape_model.extract_geometry( | |
latents, | |
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], | |
octree_depth=octree_depth | |
) | |
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" | |
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) | |
# filepath = f"{cached_dir}/{time.time()}.obj" | |
filepath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
mesh.export(filepath, include_normals=True) | |
if 'Remesh' in more: | |
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name | |
print("Remeshing with Instant Meshes...") | |
# target_face_count = int(len(mesh.faces)/10) | |
target_face_count = 1000 | |
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" | |
os.system(command) | |
filepath = remeshed_filepath | |
# filepath = filepath.replace('.obj', '_remeshed.obj') | |
return filepath | |
if __name__=="__main__": | |
parser = argparse.ArgumentParser() | |
# parser.add_argument("--model_path", type=str, required=True, help="Path to the object file",) | |
parser.add_argument("--cached_dir", type=str, default="./gradio_cached_dir") | |
parser.add_argument("--device", type=int, default=0) | |
args = parser.parse_args() | |
cached_dir = args.cached_dir | |
os.makedirs(args.cached_dir, exist_ok=True) | |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") | |
print(f"using device: {device}") | |
# for multi-view images generation | |
background_choice = OrderedDict({ | |
"Alpha as Mask": "Alpha as Mask", | |
"Auto Remove Background": "Auto Remove Background", | |
"Original Image": "Original Image", | |
}) | |
mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"] | |
# for 3D latent set diffusion | |
ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model") | |
config_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/config.yaml", repo_type="model") | |
scheluder_dict = OrderedDict({ | |
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', | |
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet | |
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet | |
}) | |
# main GUI | |
custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
button_secondary_background_fill="*neutral_100", | |
button_secondary_background_fill_hover="*neutral_200") | |
custom_css = '''#disp_image { | |
text-align: center; /* Horizontally center the content */ | |
}''' | |
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Row(): | |
image_input = gr.Image( | |
label="Image Input", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
) | |
with gr.Row(): | |
text = gr.Textbox(label="Prompt (Optional, only works for mvdream)", visible=False) | |
with gr.Row(): | |
gr.Markdown('''Try a different <b>seed</b> if the result is unsatisfying. Good Luck :)''') | |
with gr.Row(): | |
seed = gr.Number(42, label='Seed', show_label=True) | |
more = gr.CheckboxGroup(["Remesh", "Symmetry(TBD)"], label="More", show_label=False) | |
# remesh = gr.Checkbox(value=False, label='Remesh') | |
# symmetry = gr.Checkbox(value=False, label='Symmetry(TBD)', interactive=False) | |
run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
with gr.Row(): | |
gr.Examples( | |
examples=[os.path.join("./apps/examples", i) for i in os.listdir("./apps/examples")], | |
inputs=[image_input], | |
examples_per_page=8 | |
) | |
with gr.Column(scale=4): | |
with gr.Row(): | |
output_model_obj = gr.Model3D( | |
label="Output Model (OBJ Format)", | |
camera_position=(90.0, 90.0, 3.5), | |
interactive=False, | |
) | |
with gr.Row(): | |
view_front = gr.Image(label="Front", interactive=True, show_label=True) | |
view_right = gr.Image(label="Right", interactive=True, show_label=True) | |
view_back = gr.Image(label="Back", interactive=True, show_label=True) | |
view_left = gr.Image(label="Left", interactive=True, show_label=True) | |
# with gr.Accordion('Advanced options', open=False): | |
with gr.Row(equal_height=True): | |
run_mv_btn = gr.Button('Only Generate 2D', interactive=True) | |
run_3d_btn = gr.Button('Only Generate 3D', interactive=True) | |
with gr.Accordion('Advanced options (2D)', open=False): | |
with gr.Row(): | |
crop_size = gr.Number(224, label='Crop size') | |
mvimg_model = gr.Dropdown(value="CRM", label="MV Image Model", choices=mvimg_model_config_list) | |
with gr.Row(): | |
foreground_ratio = gr.Slider( | |
label="Foreground Ratio", | |
minimum=0.5, | |
maximum=1.0, | |
value=1.0, | |
step=0.05, | |
) | |
with gr.Row(): | |
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) | |
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) | |
backgroud_color = gr.ColorPicker(label="Background Color", value="#FFFFFF", interactive=True) | |
with gr.Row(): | |
mvimg_guidance_scale = gr.Number(value=3.5, minimum=3, maximum=10, label="2D Guidance Scale") | |
mvimg_steps = gr.Number(value=50, minimum=20, maximum=100, label="2D Sample Steps", precision=0) | |
with gr.Accordion('Advanced options (3D)', open=False): | |
with gr.Row(): | |
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0) | |
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps", precision=0) | |
with gr.Row(): | |
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) | |
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1) | |
gr.Markdown(_CITE_) | |
outputs = [output_model_obj] | |
rmbg = RMBG(device) | |
gen_mvimg = GenMVImage(device) | |
model = load_model(ckpt_path, config_path, device) | |
run_btn.click(fn=check_input_image, inputs=[image_input] | |
).success( | |
fn=rmbg.run, | |
inputs=[rmbg_type, image_input, crop_size, foreground_ratio, background_choice, backgroud_color], | |
outputs=[image_input] | |
).success( | |
fn=gen_mvimg.run, | |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps], | |
outputs=[view_front, view_right, view_back, view_left] | |
).success( | |
fn=image2mesh, | |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth], | |
outputs=outputs, | |
api_name="generate_img2obj") | |
run_mv_btn.click(fn=gen_mvimg.run, | |
inputs=[mvimg_model, text, image_input, crop_size, seed, mvimg_guidance_scale, mvimg_steps], | |
outputs=[view_front, view_right, view_back, view_left] | |
) | |
run_3d_btn.click(fn=image2mesh, | |
inputs=[view_front, view_right, view_back, view_left, more, scheduler, guidance_scale, seed, octree_depth], | |
outputs=outputs, | |
api_name="generate_img2obj") | |
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |