Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import torch | |
import PIL | |
from PIL import Image | |
import os | |
import sys | |
import rembg | |
import time | |
import json | |
import cv2 | |
from datetime import datetime | |
from einops import repeat, rearrange | |
from omegaconf import OmegaConf | |
from typing import Dict, Optional, Tuple, List | |
from dataclasses import dataclass | |
from .utils import * | |
from huggingface_hub import hf_hub_download | |
import spaces | |
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
class GenMVImage(object): | |
def __init__(self, device): | |
self.seed = 1024 | |
self.guidance_scale = 7.5 | |
self.step = 50 | |
self.device = device | |
from .third_party.CRM.pipelines import TwoStagePipeline | |
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config | |
stage1_sampler_config = stage1_config.sampler | |
stage1_model_config = stage1_config.models | |
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model") | |
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config | |
self.crm_pipeline = TwoStagePipeline( | |
stage1_model_config, | |
stage1_sampler_config, | |
device=self.device, | |
dtype=torch.float16 | |
) | |
self.crm_pipeline.set_seed(self.seed) | |
sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D") | |
from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers | |
self.wonder3d_pipeline = DiffusionPipeline.from_pretrained( | |
'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts' | |
custom_pipeline='flamehaze1115/wonder3d-pipeline', | |
torch_dtype=torch.float16 | |
) | |
self.wonder3d_pipeline.unet.enable_xformers_memory_efficient_attention() | |
self.wonder3d_pipeline.to(self.device) | |
self.wonder3d_pipeline.set_progress_bar_config(disable=True) | |
sys.path.append(f"{parent_dir}/apps/third_party/mvdream_diffusers") | |
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline | |
self.mvdream_pipeline = MVDreamPipeline.from_pretrained( | |
"ashawkey/mvdream-sd2.1-diffusers", # remote weights | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
) | |
self.mvdream_pipeline = self.mvdream_pipeline.to(self.device) | |
# self.imagedream_pipeline = MVDreamPipeline.from_pretrained( | |
# "ashawkey/imagedream-ipmv-diffusers", # remote weights | |
# torch_dtype=torch.float16, | |
# trust_remote_code=True, | |
# ) | |
# self.imagedream_pipeline = self.imagedream_pipeline.to(self.device) | |
def gen_image_from_crm(self, image): | |
rt_dict = self.crm_pipeline( | |
image, | |
scale=self.guidance_scale, | |
step=self.step | |
) | |
mv_imgs = rt_dict["stage1_images"] | |
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0] | |
def gen_image_from_mvdream(self, image, text): | |
if image is None: | |
mv_imgs = self.mvdream_pipeline( | |
text, | |
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy", | |
num_inference_steps=self.step, | |
guidance_scale=self.guidance_scale, | |
generator = torch.Generator(self.device).manual_seed(self.seed) | |
) | |
elif text is not None: | |
image = np.array(image) | |
image = image.astype(np.float32) / 255.0 | |
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) | |
mv_imgs = self.imagedream_pipeline( | |
text, | |
image, | |
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy", | |
num_inference_steps=self.step, | |
guidance_scale=self.guidance_scale, | |
generator = torch.Generator(self.device).manual_seed(self.seed) | |
) | |
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0] | |
def gen_image_from_wonder3d(self, image, crop_size): | |
weight_dtype = torch.float16 | |
batch = prepare_data(image, crop_size) | |
generator = torch.Generator(device=self.wonder3d_pipeline.unet.device).manual_seed(self.seed) | |
# repeat (2B, Nv, 3, H, W) | |
imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype) | |
# (2B, Nv, Nce) | |
camera_embeddings = torch.cat([batch['camera_embeddings']] * 2, dim=0).to(weight_dtype) | |
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(weight_dtype) | |
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(weight_dtype) | |
# (B*Nv, 3, H, W) | |
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W") | |
# (B*Nv, Nce) | |
out = self.wonder3d_pipeline( | |
imgs_in, | |
# camera_embeddings, | |
generator=generator, | |
guidance_scale=self.guidance_scale, | |
num_inference_steps=self.step, | |
output_type='pt', | |
num_images_per_prompt=1, | |
**{'eta': 1.0}, | |
).images | |
bsz = out.shape[0] // 2 | |
normals_pred = out[:bsz] | |
images_pred = out[bsz:] | |
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)] | |
images_pred = [save_image(images_pred[i]) for i in range(bsz)] | |
mv_imgs = images_pred | |
return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5] | |
def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step): | |
self.seed = seed | |
self.guidance_scale = guidance_scale | |
self.step = step | |
if mvimg_model.upper() == "CRM": | |
return self.gen_image_from_crm(image) | |
elif mvimg_model.upper() == "IMAGEDREAM": | |
return self.gen_image_from_mvdream(image, None) | |
elif mvimg_model.upper() == "WONDER3D": | |
return self.gen_image_from_wonder3d(image, crop_size) |