CraftsMan3D / apps /mv_models.py
wyysf's picture
i
62566b5
raw
history blame
6.38 kB
import gradio as gr
import numpy as np
import torch
import PIL
from PIL import Image
import os
import sys
import rembg
import time
import json
import cv2
from datetime import datetime
from einops import repeat, rearrange
from omegaconf import OmegaConf
from typing import Dict, Optional, Tuple, List
from dataclasses import dataclass
from .utils import *
from huggingface_hub import hf_hub_download
import spaces
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
class GenMVImage(object):
def __init__(self, device):
self.seed = 1024
self.guidance_scale = 7.5
self.step = 50
self.device = device
from .third_party.CRM.pipelines import TwoStagePipeline
stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
stage1_sampler_config = stage1_config.sampler
stage1_model_config = stage1_config.models
stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
self.crm_pipeline = TwoStagePipeline(
stage1_model_config,
stage1_sampler_config,
device=self.device,
dtype=torch.float16
)
self.crm_pipeline.set_seed(self.seed)
sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
self.wonder3d_pipeline = DiffusionPipeline.from_pretrained(
'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
custom_pipeline='flamehaze1115/wonder3d-pipeline',
torch_dtype=torch.float16
)
self.wonder3d_pipeline.unet.enable_xformers_memory_efficient_attention()
self.wonder3d_pipeline.to(self.device)
self.wonder3d_pipeline.set_progress_bar_config(disable=True)
sys.path.append(f"{parent_dir}/apps/third_party/mvdream_diffusers")
from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
self.mvdream_pipeline = MVDreamPipeline.from_pretrained(
"ashawkey/mvdream-sd2.1-diffusers", # remote weights
torch_dtype=torch.float16,
trust_remote_code=True,
)
self.mvdream_pipeline = self.mvdream_pipeline.to(self.device)
# self.imagedream_pipeline = MVDreamPipeline.from_pretrained(
# "ashawkey/imagedream-ipmv-diffusers", # remote weights
# torch_dtype=torch.float16,
# trust_remote_code=True,
# )
# self.imagedream_pipeline = self.imagedream_pipeline.to(self.device)
@spaces.GPU
def gen_image_from_crm(self, image):
rt_dict = self.crm_pipeline(
image,
scale=self.guidance_scale,
step=self.step
)
mv_imgs = rt_dict["stage1_images"]
return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
@spaces.GPU
def gen_image_from_mvdream(self, image, text):
if image is None:
mv_imgs = self.mvdream_pipeline(
text,
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
num_inference_steps=self.step,
guidance_scale=self.guidance_scale,
generator = torch.Generator(self.device).manual_seed(self.seed)
)
elif text is not None:
image = np.array(image)
image = image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
mv_imgs = self.imagedream_pipeline(
text,
image,
negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
num_inference_steps=self.step,
guidance_scale=self.guidance_scale,
generator = torch.Generator(self.device).manual_seed(self.seed)
)
return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
@spaces.GPU
def gen_image_from_wonder3d(self, image, crop_size):
weight_dtype = torch.float16
batch = prepare_data(image, crop_size)
generator = torch.Generator(device=self.wonder3d_pipeline.unet.device).manual_seed(self.seed)
# repeat (2B, Nv, 3, H, W)
imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)
# (2B, Nv, Nce)
camera_embeddings = torch.cat([batch['camera_embeddings']] * 2, dim=0).to(weight_dtype)
task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(weight_dtype)
camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(weight_dtype)
# (B*Nv, 3, H, W)
imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
# (B*Nv, Nce)
out = self.wonder3d_pipeline(
imgs_in,
# camera_embeddings,
generator=generator,
guidance_scale=self.guidance_scale,
num_inference_steps=self.step,
output_type='pt',
num_images_per_prompt=1,
**{'eta': 1.0},
).images
bsz = out.shape[0] // 2
normals_pred = out[:bsz]
images_pred = out[bsz:]
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)]
images_pred = [save_image(images_pred[i]) for i in range(bsz)]
mv_imgs = images_pred
return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
@spaces.GPU
def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
self.seed = seed
self.guidance_scale = guidance_scale
self.step = step
if mvimg_model.upper() == "CRM":
return self.gen_image_from_crm(image)
elif mvimg_model.upper() == "IMAGEDREAM":
return self.gen_image_from_mvdream(image, None)
elif mvimg_model.upper() == "WONDER3D":
return self.gen_image_from_wonder3d(image, crop_size)