Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from torch import distributed as tdist | |
from torch.nn import functional as F | |
import math | |
import mcubes | |
import numpy as np | |
from einops import repeat, rearrange | |
from skimage import measure | |
from craftsman.utils.base import BaseModule | |
from craftsman.utils.typing import * | |
from craftsman.utils.misc import get_world_size | |
from craftsman.utils.ops import generate_dense_grid_points | |
VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"] | |
class FourierEmbedder(nn.Module): | |
def __init__(self, | |
num_freqs: int = 6, | |
logspace: bool = True, | |
input_dim: int = 3, | |
include_input: bool = True, | |
include_pi: bool = True) -> None: | |
super().__init__() | |
if logspace: | |
frequencies = 2.0 ** torch.arange( | |
num_freqs, | |
dtype=torch.float32 | |
) | |
else: | |
frequencies = torch.linspace( | |
1.0, | |
2.0 ** (num_freqs - 1), | |
num_freqs, | |
dtype=torch.float32 | |
) | |
if include_pi: | |
frequencies *= torch.pi | |
self.register_buffer("frequencies", frequencies, persistent=False) | |
self.include_input = include_input | |
self.num_freqs = num_freqs | |
self.out_dim = self.get_dims(input_dim) | |
def get_dims(self, input_dim): | |
temp = 1 if self.include_input or self.num_freqs == 0 else 0 | |
out_dim = input_dim * (self.num_freqs * 2 + temp) | |
return out_dim | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.num_freqs > 0: | |
embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1) | |
if self.include_input: | |
return torch.cat((x, embed.sin(), embed.cos()), dim=-1) | |
else: | |
return torch.cat((embed.sin(), embed.cos()), dim=-1) | |
else: | |
return x | |
class LearnedFourierEmbedder(nn.Module): | |
def __init__(self, input_dim, dim): | |
super().__init__() | |
assert (dim % 2) == 0 | |
half_dim = dim // 2 | |
per_channel_dim = half_dim // input_dim | |
self.weights = nn.Parameter(torch.randn(per_channel_dim)) | |
self.out_dim = self.get_dims(input_dim) | |
def forward(self, x): | |
# [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d] | |
freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1) | |
fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1) | |
return fouriered | |
def get_dims(self, input_dim): | |
return input_dim * (self.weights.shape[0] * 2 + 1) | |
class Sine(nn.Module): | |
def __init__(self, w0 = 1.): | |
super().__init__() | |
self.w0 = w0 | |
def forward(self, x): | |
return torch.sin(self.w0 * x) | |
class Siren(nn.Module): | |
def __init__( | |
self, | |
in_dim, | |
out_dim, | |
w0 = 1., | |
c = 6., | |
is_first = False, | |
use_bias = True, | |
activation = None, | |
dropout = 0. | |
): | |
super().__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.is_first = is_first | |
weight = torch.zeros(out_dim, in_dim) | |
bias = torch.zeros(out_dim) if use_bias else None | |
self.init_(weight, bias, c = c, w0 = w0) | |
self.weight = nn.Parameter(weight) | |
self.bias = nn.Parameter(bias) if use_bias else None | |
self.activation = Sine(w0) if activation is None else activation | |
self.dropout = nn.Dropout(dropout) | |
def init_(self, weight, bias, c, w0): | |
dim = self.in_dim | |
w_std = (1 / dim) if self.is_first else (math.sqrt(c / dim) / w0) | |
weight.uniform_(-w_std, w_std) | |
if bias is not None: | |
bias.uniform_(-w_std, w_std) | |
def forward(self, x): | |
out = F.linear(x, self.weight, self.bias) | |
out = self.activation(out) | |
out = self.dropout(out) | |
return out | |
def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, include_pi=True): | |
if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1): | |
return nn.Identity(), input_dim | |
elif embed_type == "fourier": | |
embedder_obj = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) | |
elif embed_type == "learned_fourier": | |
embedder_obj = LearnedFourierEmbedder(in_channels=input_dim, dim=num_freqs) | |
elif embed_type == "siren": | |
embedder_obj = Siren(in_dim=input_dim, out_dim=num_freqs * input_dim * 2 + input_dim) | |
elif embed_type == "hashgrid": | |
raise NotImplementedError | |
elif embed_type == "sphere_harmonic": | |
raise NotImplementedError | |
else: | |
raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}") | |
return embedder_obj | |
###################### AutoEncoder | |
class AutoEncoder(BaseModule): | |
class Config(BaseModule.Config): | |
pretrained_model_name_or_path: str = "" | |
num_latents: int = 256 | |
embed_dim: int = 64 | |
width: int = 768 | |
cfg: Config | |
def configure(self) -> None: | |
super().configure() | |
def encode(self, x: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]: | |
raise NotImplementedError | |
def decode(self, z: torch.FloatTensor) -> torch.FloatTensor: | |
raise NotImplementedError | |
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True): | |
posterior = None | |
if self.cfg.embed_dim > 0: | |
moments = self.pre_kl(latents) | |
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1) | |
if sample_posterior: | |
kl_embed = posterior.sample() | |
else: | |
kl_embed = posterior.mode() | |
else: | |
kl_embed = latents | |
return kl_embed, posterior | |
def forward(self, | |
surface: torch.FloatTensor, | |
queries: torch.FloatTensor, | |
sample_posterior: bool = True): | |
shape_latents, kl_embed, posterior = self.encode(surface, sample_posterior=sample_posterior) | |
latents = self.decode(kl_embed) # [B, num_latents, width] | |
logits = self.query(queries, latents) # [B,] | |
return shape_latents, latents, posterior, logits | |
def query(self, queries: torch.FloatTensor, latents: torch.FloatTensor) -> torch.FloatTensor: | |
raise NotImplementedError | |
def extract_geometry(self, | |
latents: torch.FloatTensor, | |
bounds: Union[Tuple[float], List[float], float] = (-1.05, -1.05, -1.05, 1.05, 1.05, 1.05), | |
octree_depth: int = 8, | |
num_chunks: int = 10000, | |
): | |
if isinstance(bounds, float): | |
bounds = [-bounds, -bounds, -bounds, bounds, bounds, bounds] | |
bbox_min = np.array(bounds[0:3]) | |
bbox_max = np.array(bounds[3:6]) | |
bbox_size = bbox_max - bbox_min | |
xyz_samples, grid_size, length = generate_dense_grid_points( | |
bbox_min=bbox_min, | |
bbox_max=bbox_max, | |
octree_depth=octree_depth, | |
indexing="ij" | |
) | |
xyz_samples = torch.FloatTensor(xyz_samples) | |
batch_size = latents.shape[0] | |
batch_logits = [] | |
for start in range(0, xyz_samples.shape[0], num_chunks): | |
queries = xyz_samples[start: start + num_chunks, :].to(latents) | |
batch_queries = repeat(queries, "p c -> b p c", b=batch_size) | |
logits = self.query(batch_queries, latents) | |
batch_logits.append(logits.cpu()) | |
grid_logits = torch.cat(batch_logits, dim=1).view((batch_size, grid_size[0], grid_size[1], grid_size[2])).float().numpy() | |
mesh_v_f = [] | |
has_surface = np.zeros((batch_size,), dtype=np.bool_) | |
for i in range(batch_size): | |
try: | |
vertices, faces, normals, _ = measure.marching_cubes(grid_logits[i], 0, method="lewiner") | |
# vertices, faces = mcubes.marching_cubes(grid_logits[i], 0) | |
vertices = vertices / grid_size * bbox_size + bbox_min | |
faces = faces[:, [2, 1, 0]] | |
mesh_v_f.append((vertices.astype(np.float32), np.ascontiguousarray(faces))) | |
has_surface[i] = True | |
except: | |
mesh_v_f.append((None, None)) | |
has_surface[i] = False | |
return mesh_v_f, has_surface | |
class DiagonalGaussianDistribution(object): | |
def __init__(self, parameters: Union[torch.Tensor, List[torch.Tensor]], deterministic=False, feat_dim=1): | |
self.feat_dim = feat_dim | |
self.parameters = parameters | |
if isinstance(parameters, list): | |
self.mean = parameters[0] | |
self.logvar = parameters[1] | |
else: | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=feat_dim) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like(self.mean) | |
def sample(self): | |
x = self.mean + self.std * torch.randn_like(self.mean) | |
return x | |
def kl(self, other=None, dims=(1, 2)): | |
if self.deterministic: | |
return torch.Tensor([0.]) | |
else: | |
if other is None: | |
return 0.5 * torch.mean(torch.pow(self.mean, 2) | |
+ self.var - 1.0 - self.logvar, | |
dim=dims) | |
else: | |
return 0.5 * torch.mean( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var - 1.0 - self.logvar + other.logvar, | |
dim=dims) | |
def nll(self, sample, dims=(1, 2)): | |
if self.deterministic: | |
return torch.Tensor([0.]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum( | |
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
dim=dims) | |
def mode(self): | |
return self.mean | |