Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import json | |
import torch | |
import sys | |
import base64 | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
import PIL | |
from PIL import Image | |
from collections import OrderedDict | |
import trimesh | |
import rembg | |
import requests | |
import gradio as gr | |
from typing import Any | |
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
sys.path.append(os.path.join(proj_dir)) | |
import tempfile | |
import craftsman | |
from craftsman.utils.config import ExperimentConfig, load_config | |
_TITLE = '''CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner''' | |
_DESCRIPTION = ''' | |
<div> | |
<span style="color: red;">Important: If you have your own data and want to collaborate, we are welcom to any contact.</span> | |
<div> | |
Select or upload a image, then just click 'Generate'. | |
<br> | |
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka ε εΏ) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes, | |
then a multi-view normal enhanced image generation model is used to refine the mesh. | |
We provide the coarse 3D diffusion part here. | |
<br> | |
If you found CraftsMan is helpful, please help to β the <a href='https://github.com/wyysf-98/CraftsMan/' target='_blank'>Github Repo</a>. Thanks! | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/wyysf-98/CraftsMan/'><img src='https://img.shields.io/github/stars/wyysf-98/CraftsMan?style=social' /></a> | |
<br> | |
*If you have your own multi-view images, you can directly upload it. | |
</div> | |
''' | |
_CITE_ = r""" | |
--- | |
π **Citation** | |
If you find our work useful for your research or applications, please cite using this bibtex: | |
```bibtex | |
@article{li2024craftsman, | |
author = {Weiyu Li and Jiarui Liu and Hongyu Yan and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long}, | |
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner}, | |
journal = {arXiv preprint arXiv:2405.14979}, | |
year = {2024}, | |
} | |
``` | |
π€ **Acknowledgements** | |
We use <a href='https://github.com/wjakob/instant-meshes' target='_blank'>Instant Meshes</a> to remesh the generated mesh to a lower face count, thanks to the authors for the great work. | |
π **License** | |
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first. | |
π§ **Contact** | |
If you have any questions, feel free to open a discussion or contact us at <b>weiyuli.cn@gmail.com</b>. | |
""" | |
model = None | |
cached_dir = None | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
class RMBG(object): | |
def __init__(self): | |
pass | |
def rmbg_rembg(self, input_image, background_color): | |
def _rembg_remove( | |
image: PIL.Image.Image, | |
rembg_session = None, | |
force: bool = False, | |
**rembg_kwargs, | |
) -> PIL.Image.Image: | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
# explain why current do not rm bg | |
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") | |
background = Image.new("RGBA", image.size, (*background_color, 0)) | |
image = Image.alpha_composite(background, image) | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
# calculate the min bbox of the image | |
alpha = image.split()[-1] | |
image = image.crop(alpha.getbbox()) | |
return image | |
return _rembg_remove(input_image, None, force_remove=True) | |
def run(self, rm_type, image_file, foreground_ratio, background_choice, background_color=(255, 255, 255)): | |
image = Image.open(image_file) | |
if "Original" in background_choice: | |
return image | |
else: | |
if background_choice == "Alpha as mask": | |
alpha = image.split()[-1] | |
image = image.crop(alpha.getbbox()) | |
elif "Remove" in background_choice: | |
if rm_type.upper() == "REMBG": | |
image = self.rmbg_rembg(image, background_color=background_color) | |
else: | |
return -1 | |
# Calculate the new size after rescaling | |
new_size = tuple(int(dim * foreground_ratio) for dim in image.size) | |
# Resize the image while maintaining the aspect ratio | |
resized_image = image.resize(new_size) | |
# Create a new image with the original size and white background | |
padded_image = PIL.Image.new("RGBA", image.size, (*background_color, 0)) | |
paste_position = ((image.width - resized_image.width) // 2, (image.height - resized_image.height) // 2) | |
padded_image.paste(resized_image, paste_position) | |
# expand image to 1:1 | |
width, height = padded_image.size | |
if width == height: | |
return padded_image | |
new_size = (max(width, height), max(width, height)) | |
image = PIL.Image.new("RGBA", new_size, (*background_color, 1)) | |
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
image.paste(padded_image, paste_position) | |
filepath = tempfile.NamedTemporaryFile(suffix=f".png", delete=False).name | |
image.save(filepath) | |
return filepath | |
def image2mesh(image: Any, | |
more: bool = False, | |
scheluder_name: str ="DDIMScheduler", | |
guidance_scale: int = 7.5, | |
steps: int = 50, | |
seed: int = 4, | |
target_face_count: int = 2000, | |
octree_depth: int = 8): | |
# global rmbg | |
# processed_image = rmbg.run(rm_type, image, foreground_ratio, background_choice) | |
processed_image = Image.open(image) | |
sample_inputs = { | |
"image": [ | |
processed_image | |
] | |
} | |
global model | |
latents = model.sample( | |
sample_inputs, | |
sample_times=1, | |
steps=steps, | |
guidance_scale=guidance_scale, | |
seed=seed | |
)[0] | |
# decode the latents to mesh | |
box_v = 1.1 | |
mesh_outputs, _ = model.shape_model.extract_geometry( | |
latents, | |
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v], | |
octree_depth=octree_depth | |
) | |
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo" | |
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1]) | |
# filepath = f"{cached_dir}/{time.time()}.obj" | |
filepath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name | |
mesh.export(filepath, include_normals=True) | |
if 'Remesh' in more: | |
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name | |
print("Remeshing with Instant Meshes...") | |
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}" | |
os.system(command) | |
filepath = remeshed_filepath | |
return filepath | |
def mesh2texture(mesh_file, image_file): | |
headers = {'Content-Type': 'application/json'} | |
# server_url = "114.249.238.184:34119" | |
# server_url = "algodemo.sz.lightions.top:31025" | |
server_url = "algodemo.sz.lightions.top:31024" | |
with open(image_file, 'rb') as f: | |
image_bytes = f.read() | |
with open(mesh_file, 'rb') as f: | |
mesh_bytes = f.read() | |
request = { | |
'png_base64_image': base64.b64encode(image_bytes).decode('utf-8'), | |
'glb_base64_mesh': base64.b64encode(mesh_bytes).decode('utf-8'), | |
} | |
response = requests.post( | |
url=f"http://{server_url}/generate_texture", | |
headers=headers, | |
data=json.dumps(request), | |
).json() | |
mesh_bytes = base64.b64decode(response['glb_base64_mesh']) | |
filepath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name | |
with open(filepath, 'wb') as f: | |
f.write(mesh_bytes) | |
return filepath | |
if __name__=="__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default="", help="Path to the object file",) | |
parser.add_argument("--cached_dir", type=str, default="") | |
parser.add_argument("--device", type=int, default=0) | |
args = parser.parse_args() | |
cached_dir = args.cached_dir | |
if cached_dir != "": | |
os.makedirs(args.cached_dir, exist_ok=True) | |
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu") | |
print(f"using device: {device}") | |
# for input image | |
background_choice = OrderedDict({ | |
"Alpha as Mask": "Alpha as Mask", | |
"Auto Remove Background": "Auto Remove Background", | |
"Original Image": "Original Image", | |
}) | |
# for 3D latent set diffusion | |
if args.model_path == "": | |
ckpt_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="model.ckpt", repo_type="model") | |
config_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="config.yaml", repo_type="model") | |
else: | |
ckpt_path = os.path.join(args.model_path, "model.ckpt") | |
config_path = os.path.join(args.model_path, "config.yaml") | |
scheluder_dict = OrderedDict({ | |
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler', | |
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet | |
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet | |
}) | |
# main GUI | |
custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
button_secondary_background_fill="*neutral_100", | |
button_secondary_background_fill_hover="*neutral_200") | |
custom_css = '''#disp_image { | |
text-align: center; /* Horizontally center the content */ | |
}''' | |
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
with gr.Column(): | |
# input image | |
with gr.Row(): | |
image_input = gr.Image( | |
label="Image Input", | |
sources="upload", | |
type="filepath", | |
) | |
run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
with gr.Row(): | |
gr.Markdown('''Try a different <b>seed and MV Model</b> for better results. Good Luck :)''') | |
with gr.Row(): | |
seed = gr.Number(42, label='Seed', show_label=True) | |
more = gr.CheckboxGroup(["Remesh"], label="More", show_label=False) | |
target_face_count = gr.Number(2000, label='Target Face Count', show_label=True) | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys())) | |
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"]) | |
foreground_ratio = gr.Slider(label="Foreground Ratio", value=0.95, minimum=0.5, maximum=1.0, step=0.01) | |
with gr.Row(): | |
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0) | |
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps") | |
with gr.Row(): | |
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys())) | |
octree_depth = gr.Slider(label="Octree Depth", value=8, minimum=4, maximum=9, step=1) | |
with gr.Row(): | |
gr.Examples( | |
examples=[os.path.join("./examples", i) for i in os.listdir("./examples")], | |
inputs=[image_input], | |
examples_per_page=8 | |
) | |
with gr.Column(scale=4): | |
with gr.Row(): | |
output_model_obj = gr.Model3D( | |
label="Output Model (GLB Format)", | |
camera_position=(90.0, 90.0, 3.5), | |
interactive=False, | |
) | |
with gr.Row(): | |
output_model_tex = gr.Model3D( | |
label="Output Textured Model (GLB Format)", | |
camera_position=(90.0, 90.0, 3.5), | |
interactive=False, | |
) | |
# with gr.Row(): | |
# gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''') | |
gr.Markdown(_CITE_) | |
# outputs = [output_model_obj] | |
# outputs_tex = [output_model_tex] | |
rmbg = RMBG() | |
# model = load_model(ckpt_path, config_path, device) | |
cfg = load_config(config_path) | |
model = craftsman.find(cfg.system_type)(cfg.system) | |
print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}") | |
ckpt = torch.load(ckpt_path, map_location=torch.device('cpu')) | |
model.load_state_dict( | |
ckpt["state_dict"] if "state_dict" in ckpt else ckpt, | |
) | |
model = model.to(device).eval() | |
run_btn.click(fn=check_input_image, inputs=[image_input] | |
).success( | |
fn=rmbg.run, | |
inputs=[rmbg_type, image_input, foreground_ratio, background_choice], | |
outputs=[image_input] | |
).success( | |
fn=image2mesh, | |
inputs=[image_input, more, scheduler, guidance_scale, steps, seed, target_face_count, octree_depth], | |
outputs=[output_model_obj], | |
api_name="generate_img2obj" | |
).success( | |
fn=mesh2texture, | |
inputs=[output_model_obj, image_input], | |
outputs=[output_model_tex], | |
api_name="generate_obj2tex" | |
) | |
demo.queue().launch(share=True, allowed_paths=[args.cached_dir]) |