wyysf commited on
Commit
8133633
·
1 Parent(s): 497a6f2

update to v1.5

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. apps/examples/1.jpg +0 -0
  2. apps/examples/1_cute_girl.webp +0 -0
  3. apps/examples/bird.jpg +0 -0
  4. apps/examples/blue_monster.webp +0 -0
  5. apps/examples/boy2.webp +0 -0
  6. apps/examples/bulldog.webp +0 -0
  7. apps/examples/catman.webp +0 -0
  8. apps/examples/cyberpunk_man.webp +0 -0
  9. apps/examples/dinosaur_boy.webp +0 -0
  10. apps/examples/doraemon.webp +0 -0
  11. apps/examples/dragon.webp +0 -0
  12. apps/examples/dragontoy.jpg +0 -0
  13. apps/examples/girl1.webp +0 -0
  14. apps/examples/gun.webp +0 -0
  15. apps/examples/kunkun.webp +0 -0
  16. apps/examples/link.webp +0 -0
  17. apps/examples/mushroom1.webp +0 -0
  18. apps/examples/mushroom2.webp +0 -0
  19. apps/examples/phoenix.webp +0 -0
  20. apps/examples/robot.png +0 -0
  21. apps/examples/rose.webp +0 -0
  22. apps/examples/shoe.webp +0 -0
  23. apps/examples/sports_girl.webp +0 -0
  24. apps/examples/stone.webp +0 -0
  25. apps/examples/sweater.webp +0 -0
  26. apps/examples/sword.webp +0 -0
  27. apps/examples/teapot.webp +0 -0
  28. apps/examples/toy_bear.webp +0 -0
  29. apps/examples/toy_dog.webp +0 -0
  30. apps/examples/toy_pig.webp +0 -0
  31. apps/examples/toy_rabbit.webp +0 -0
  32. apps/examples/wiking.webp +0 -0
  33. apps/examples/wings.webp +0 -0
  34. apps/third_party/CRM/LICENSE +0 -21
  35. apps/third_party/CRM/README.md +0 -85
  36. apps/third_party/CRM/app.py +0 -228
  37. apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml +0 -21
  38. apps/third_party/CRM/configs/specs_objaverse_total.json +0 -57
  39. apps/third_party/CRM/configs/stage2-v2-snr.yaml +0 -25
  40. apps/third_party/CRM/imagedream/.DS_Store +0 -0
  41. apps/third_party/CRM/imagedream/__init__.py +0 -1
  42. apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-310.pyc +0 -0
  43. apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-38.pyc +0 -0
  44. apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-310.pyc +0 -0
  45. apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-38.pyc +0 -0
  46. apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-310.pyc +0 -0
  47. apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-38.pyc +0 -0
  48. apps/third_party/CRM/imagedream/camera_utils.py +0 -99
  49. apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv.yaml +0 -61
  50. apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_ch8.yaml +0 -61
apps/examples/1.jpg DELETED
Binary file (33.8 kB)
 
apps/examples/1_cute_girl.webp DELETED
Binary file (38.4 kB)
 
apps/examples/bird.jpg DELETED
Binary file (43.8 kB)
 
apps/examples/blue_monster.webp DELETED
Binary file (52.5 kB)
 
apps/examples/boy2.webp DELETED
Binary file (21 kB)
 
apps/examples/bulldog.webp DELETED
Binary file (33.1 kB)
 
apps/examples/catman.webp DELETED
Binary file (49 kB)
 
apps/examples/cyberpunk_man.webp DELETED
Binary file (57 kB)
 
apps/examples/dinosaur_boy.webp DELETED
Binary file (23.4 kB)
 
apps/examples/doraemon.webp DELETED
Binary file (84.3 kB)
 
apps/examples/dragon.webp DELETED
Binary file (65.8 kB)
 
apps/examples/dragontoy.jpg DELETED
Binary file (16.6 kB)
 
apps/examples/girl1.webp DELETED
Binary file (354 kB)
 
apps/examples/gun.webp DELETED
Binary file (27.3 kB)
 
apps/examples/kunkun.webp DELETED
Binary file (6.73 kB)
 
apps/examples/link.webp DELETED
Binary file (41.3 kB)
 
apps/examples/mushroom1.webp DELETED
Binary file (64.6 kB)
 
apps/examples/mushroom2.webp DELETED
Binary file (11.3 kB)
 
apps/examples/phoenix.webp DELETED
Binary file (14.6 kB)
 
apps/examples/robot.png DELETED
Binary file (58.9 kB)
 
apps/examples/rose.webp DELETED
Binary file (55.2 kB)
 
apps/examples/shoe.webp DELETED
Binary file (75 kB)
 
apps/examples/sports_girl.webp DELETED
Binary file (97.3 kB)
 
apps/examples/stone.webp DELETED
Binary file (12.9 kB)
 
apps/examples/sweater.webp DELETED
Binary file (119 kB)
 
apps/examples/sword.webp DELETED
Binary file (111 kB)
 
apps/examples/teapot.webp DELETED
Binary file (4 kB)
 
apps/examples/toy_bear.webp DELETED
Binary file (5.92 kB)
 
apps/examples/toy_dog.webp DELETED
Binary file (5.4 kB)
 
apps/examples/toy_pig.webp DELETED
Binary file (7.18 kB)
 
apps/examples/toy_rabbit.webp DELETED
Binary file (4.97 kB)
 
apps/examples/wiking.webp DELETED
Binary file (12.2 kB)
 
apps/examples/wings.webp DELETED
Binary file (102 kB)
 
apps/third_party/CRM/LICENSE DELETED
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2024 TSAIL group
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/README.md DELETED
@@ -1,85 +0,0 @@
1
- # Convolutional Reconstruction Model
2
-
3
- Official implementation for *CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model*.
4
-
5
- **CRM is a feed-forward model which can generate 3D textured mesh in 10 seconds.**
6
-
7
- ## [Project Page](https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/) | [Arxiv](https://arxiv.org/abs/2403.05034) | [HF-Demo](https://huggingface.co/spaces/Zhengyi/CRM) | [Weights](https://huggingface.co/Zhengyi/CRM)
8
-
9
- https://github.com/thu-ml/CRM/assets/40787266/8b325bc0-aa74-4c26-92e8-a8f0c1079382
10
-
11
- ## Try CRM 🍻
12
- * Try CRM at [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM).
13
- * Try CRM at [Replicate Demo](https://replicate.com/camenduru/crm). Thanks [@camenduru](https://github.com/camenduru)!
14
-
15
- ## Install
16
-
17
- ### Step 1 - Base
18
-
19
- Install package one by one, we use **python 3.9**
20
-
21
- ```bash
22
- pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
23
- pip install torch-scatter==2.1.1 -f https://data.pyg.org/whl/torch-1.13.1+cu117.html
24
- pip install kaolin==0.14.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-1.13.1_cu117.html
25
- pip install -r requirements.txt
26
- ```
27
-
28
- besides, one by one need to install xformers manually according to the official [doc](https://github.com/facebookresearch/xformers?tab=readme-ov-file#installing-xformers) (**conda no need**), e.g.
29
-
30
- ```bash
31
- pip install ninja
32
- pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers
33
- ```
34
-
35
- ### Step 2 - Nvdiffrast
36
-
37
- Install nvdiffrast according to the official [doc](https://nvlabs.github.io/nvdiffrast/#installation), e.g.
38
-
39
- ```bash
40
- pip install git+https://github.com/NVlabs/nvdiffrast
41
- ```
42
-
43
-
44
-
45
- ## Inference
46
-
47
- We suggest gradio for a visualized inference.
48
-
49
- ```
50
- gradio app.py
51
- ```
52
-
53
- ![image](https://github.com/thu-ml/CRM/assets/40787266/4354d22a-a641-4531-8408-c761ead8b1a2)
54
-
55
- For inference in command lines, simply run
56
- ```bash
57
- CUDA_VISIBLE_DEVICES="0" python run.py --inputdir "examples/kunkun.webp"
58
- ```
59
- It will output the preprocessed image, generated 6-view images and CCMs and a 3D model in obj format.
60
-
61
- **Tips:** (1) If the result is unsatisfatory, please check whether the input image is correctly pre-processed into a grey background. Otherwise the results will be unpredictable.
62
- (2) Different from the [Huggingface Demo](https://huggingface.co/spaces/Zhengyi/CRM), this official implementation uses UV texture instead of vertex color. It has better texture than the online demo but longer generating time owing to the UV texturing.
63
-
64
- ## Todo List
65
- - [x] Release inference code.
66
- - [x] Release pretrained models.
67
- - [ ] Optimize inference code to fit in low memery GPU.
68
- - [ ] Upload training code.
69
-
70
- ## Acknowledgement
71
- - [ImageDream](https://github.com/bytedance/ImageDream)
72
- - [nvdiffrast](https://github.com/NVlabs/nvdiffrast)
73
- - [kiuikit](https://github.com/ashawkey/kiuikit)
74
- - [GET3D](https://github.com/nv-tlabs/GET3D)
75
-
76
- ## Citation
77
-
78
- ```
79
- @article{wang2024crm,
80
- title={CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model},
81
- author={Zhengyi Wang and Yikai Wang and Yifei Chen and Chendong Xiang and Shuo Chen and Dajiang Yu and Chongxuan Li and Hang Su and Jun Zhu},
82
- journal={arXiv preprint arXiv:2403.05034},
83
- year={2024}
84
- }
85
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/app.py DELETED
@@ -1,228 +0,0 @@
1
- # Not ready to use yet
2
- import argparse
3
- import numpy as np
4
- import gradio as gr
5
- from omegaconf import OmegaConf
6
- import torch
7
- from PIL import Image
8
- import PIL
9
- from pipelines import TwoStagePipeline
10
- from huggingface_hub import hf_hub_download
11
- import os
12
- import rembg
13
- from typing import Any
14
- import json
15
- import os
16
- import json
17
- import argparse
18
-
19
- from model import CRM
20
- from inference import generate3d
21
-
22
- pipeline = None
23
- rembg_session = rembg.new_session()
24
-
25
-
26
- def expand_to_square(image, bg_color=(0, 0, 0, 0)):
27
- # expand image to 1:1
28
- width, height = image.size
29
- if width == height:
30
- return image
31
- new_size = (max(width, height), max(width, height))
32
- new_image = Image.new("RGBA", new_size, bg_color)
33
- paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
34
- new_image.paste(image, paste_position)
35
- return new_image
36
-
37
- def check_input_image(input_image):
38
- if input_image is None:
39
- raise gr.Error("No image uploaded!")
40
-
41
-
42
- def remove_background(
43
- image: PIL.Image.Image,
44
- rembg_session = None,
45
- force: bool = False,
46
- **rembg_kwargs,
47
- ) -> PIL.Image.Image:
48
- do_remove = True
49
- if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
50
- # explain why current do not rm bg
51
- print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
52
- background = Image.new("RGBA", image.size, (0, 0, 0, 0))
53
- image = Image.alpha_composite(background, image)
54
- do_remove = False
55
- do_remove = do_remove or force
56
- if do_remove:
57
- image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
58
- return image
59
-
60
- def do_resize_content(original_image: Image, scale_rate):
61
- # resize image content wile retain the original image size
62
- if scale_rate != 1:
63
- # Calculate the new size after rescaling
64
- new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
65
- # Resize the image while maintaining the aspect ratio
66
- resized_image = original_image.resize(new_size)
67
- # Create a new image with the original size and black background
68
- padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
69
- paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
70
- padded_image.paste(resized_image, paste_position)
71
- return padded_image
72
- else:
73
- return original_image
74
-
75
- def add_background(image, bg_color=(255, 255, 255)):
76
- # given an RGBA image, alpha channel is used as mask to add background color
77
- background = Image.new("RGBA", image.size, bg_color)
78
- return Image.alpha_composite(background, image)
79
-
80
-
81
- def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
82
- """
83
- input image is a pil image in RGBA, return RGB image
84
- """
85
- print(background_choice)
86
- if background_choice == "Alpha as mask":
87
- background = Image.new("RGBA", image.size, (0, 0, 0, 0))
88
- image = Image.alpha_composite(background, image)
89
- else:
90
- image = remove_background(image, rembg_session, force_remove=True)
91
- image = do_resize_content(image, foreground_ratio)
92
- image = expand_to_square(image)
93
- image = add_background(image, backgroud_color)
94
- return image.convert("RGB")
95
-
96
-
97
- def gen_image(input_image, seed, scale, step):
98
- global pipeline, model, args
99
- pipeline.set_seed(seed)
100
- rt_dict = pipeline(input_image, scale=scale, step=step)
101
- stage1_images = rt_dict["stage1_images"]
102
- stage2_images = rt_dict["stage2_images"]
103
- np_imgs = np.concatenate(stage1_images, 1)
104
- np_xyzs = np.concatenate(stage2_images, 1)
105
-
106
- glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, args.device)
107
- return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path, obj_path
108
-
109
-
110
- parser = argparse.ArgumentParser()
111
- parser.add_argument(
112
- "--stage1_config",
113
- type=str,
114
- default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
115
- help="config for stage1",
116
- )
117
- parser.add_argument(
118
- "--stage2_config",
119
- type=str,
120
- default="configs/stage2-v2-snr.yaml",
121
- help="config for stage2",
122
- )
123
-
124
- parser.add_argument("--device", type=str, default="cuda")
125
- args = parser.parse_args()
126
-
127
- crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
128
- specs = json.load(open("configs/specs_objaverse_total.json"))
129
- model = CRM(specs).to(args.device)
130
- model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)
131
-
132
- stage1_config = OmegaConf.load(args.stage1_config).config
133
- stage2_config = OmegaConf.load(args.stage2_config).config
134
- stage2_sampler_config = stage2_config.sampler
135
- stage1_sampler_config = stage1_config.sampler
136
-
137
- stage1_model_config = stage1_config.models
138
- stage2_model_config = stage2_config.models
139
-
140
- xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
141
- pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
142
- stage1_model_config.resume = pixel_path
143
- stage2_model_config.resume = xyz_path
144
-
145
- pipeline = TwoStagePipeline(
146
- stage1_model_config,
147
- stage2_model_config,
148
- stage1_sampler_config,
149
- stage2_sampler_config,
150
- device=args.device,
151
- dtype=torch.float16
152
- )
153
-
154
- with gr.Blocks() as demo:
155
- gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
156
- with gr.Row():
157
- with gr.Column():
158
- with gr.Row():
159
- image_input = gr.Image(
160
- label="Image input",
161
- image_mode="RGBA",
162
- sources="upload",
163
- type="pil",
164
- )
165
- processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
166
- with gr.Row():
167
- with gr.Column():
168
- with gr.Row():
169
- background_choice = gr.Radio([
170
- "Alpha as mask",
171
- "Auto Remove background"
172
- ], value="Auto Remove background",
173
- label="backgroud choice")
174
- # do_remove_background = gr.Checkbox(label=, value=True)
175
- # force_remove = gr.Checkbox(label=, value=False)
176
- back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
177
- foreground_ratio = gr.Slider(
178
- label="Foreground Ratio",
179
- minimum=0.5,
180
- maximum=1.0,
181
- value=1.0,
182
- step=0.05,
183
- )
184
-
185
- with gr.Column():
186
- seed = gr.Number(value=1234, label="seed", precision=0)
187
- guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
188
- step = gr.Number(value=50, minimum=30, maximum=100, label="sample steps", precision=0)
189
- text_button = gr.Button("Generate 3D shape")
190
- gr.Examples(
191
- examples=[os.path.join("examples", i) for i in os.listdir("examples")],
192
- inputs=[image_input],
193
- )
194
- with gr.Column():
195
- image_output = gr.Image(interactive=False, label="Output RGB image")
196
- xyz_ouput = gr.Image(interactive=False, label="Output CCM image")
197
-
198
- output_model = gr.Model3D(
199
- label="Output GLB",
200
- interactive=False,
201
- )
202
- gr.Markdown("Note: The GLB model shown here has a darker lighting and enlarged UV seams. Download for correct results.")
203
- output_obj = gr.File(interactive=False, label="Output OBJ")
204
-
205
- inputs = [
206
- processed_image,
207
- seed,
208
- guidance_scale,
209
- step,
210
- ]
211
- outputs = [
212
- image_output,
213
- xyz_ouput,
214
- output_model,
215
- output_obj,
216
- ]
217
-
218
-
219
- text_button.click(fn=check_input_image, inputs=[image_input]).success(
220
- fn=preprocess_image,
221
- inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
222
- outputs=[processed_image],
223
- ).success(
224
- fn=gen_image,
225
- inputs=inputs,
226
- outputs=outputs,
227
- )
228
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml DELETED
@@ -1,21 +0,0 @@
1
- config:
2
- # others
3
- seed: 1234
4
- num_frames: 7
5
- mode: pixel
6
- offset_noise: true
7
- # model related
8
- models:
9
- config: imagedream/configs/sd_v2_base_ipmv_zero_SNR.yaml
10
- resume: models/pixel.pth
11
- # sampler related
12
- sampler:
13
- target: libs.sample.ImageDreamDiffusion
14
- params:
15
- mode: pixel
16
- num_frames: 7
17
- camera_views: [1, 2, 3, 4, 5, 0, 0]
18
- ref_position: 6
19
- random_background: false
20
- offset_noise: true
21
- resize_rate: 1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/configs/specs_objaverse_total.json DELETED
@@ -1,57 +0,0 @@
1
- {
2
- "Input": {
3
- "img_num": 16,
4
- "class": "all",
5
- "camera_angle_num": 8,
6
- "tet_grid_size": 80,
7
- "validate_num": 16,
8
- "scale": 0.95,
9
- "radius": 3,
10
- "resolution": [256, 256]
11
- },
12
-
13
- "Pretrain": {
14
- "mode": null,
15
- "sdf_threshold": 0.1,
16
- "sdf_scale": 10,
17
- "batch_infer": false,
18
- "lr": 1e-4,
19
- "radius": 0.5
20
- },
21
-
22
- "Train": {
23
- "mode": "rnd",
24
- "num_epochs": 500,
25
- "grad_acc": 1,
26
- "warm_up": 0,
27
- "decay": 0.000,
28
- "learning_rate": {
29
- "init": 1e-4,
30
- "sdf_decay": 1,
31
- "rgb_decay": 1
32
- },
33
- "batch_size": 4,
34
- "eva_iter": 80,
35
- "eva_all_epoch": 10,
36
- "tex_sup_mode": "blender",
37
- "exp_uv_mesh": false,
38
- "doub": false,
39
- "random_bg": false,
40
- "shift": 0,
41
- "aug_shift": 0,
42
- "geo_type": "flex"
43
- },
44
-
45
- "ArchSpecs": {
46
- "unet_type": "diffusers",
47
- "use_3D_aware": false,
48
- "fea_concat": false,
49
- "mlp_bias": true
50
- },
51
-
52
- "DecoderSpecs": {
53
- "c_dim": 32,
54
- "plane_resolution": 256
55
- }
56
- }
57
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/configs/stage2-v2-snr.yaml DELETED
@@ -1,25 +0,0 @@
1
- config:
2
- # others
3
- seed: 1234
4
- num_frames: 6
5
- mode: pixel
6
- offset_noise: true
7
- gd_type: xyz
8
- # model related
9
- models:
10
- config: imagedream/configs/sd_v2_base_ipmv_chin8_zero_snr.yaml
11
- resume: models/xyz.pth
12
-
13
- # eval related
14
- sampler:
15
- target: libs.sample.ImageDreamDiffusionStage2
16
- params:
17
- mode: pixel
18
- num_frames: 6
19
- camera_views: [1, 2, 3, 4, 5, 0]
20
- ref_position: null
21
- random_background: false
22
- offset_noise: true
23
- resize_rate: 1.0
24
-
25
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/imagedream/.DS_Store DELETED
Binary file (6.15 kB)
 
apps/third_party/CRM/imagedream/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .model_zoo import build_model
 
 
apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (219 Bytes)
 
apps/third_party/CRM/imagedream/__pycache__/__init__.cpython-38.pyc DELETED
Binary file (216 Bytes)
 
apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-310.pyc DELETED
Binary file (2.83 kB)
 
apps/third_party/CRM/imagedream/__pycache__/camera_utils.cpython-38.pyc DELETED
Binary file (2.75 kB)
 
apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-310.pyc DELETED
Binary file (1.79 kB)
 
apps/third_party/CRM/imagedream/__pycache__/model_zoo.cpython-38.pyc DELETED
Binary file (1.79 kB)
 
apps/third_party/CRM/imagedream/camera_utils.py DELETED
@@ -1,99 +0,0 @@
1
- import numpy as np
2
- import torch
3
-
4
-
5
- def create_camera_to_world_matrix(elevation, azimuth):
6
- elevation = np.radians(elevation)
7
- azimuth = np.radians(azimuth)
8
- # Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
9
- x = np.cos(elevation) * np.sin(azimuth)
10
- y = np.sin(elevation)
11
- z = np.cos(elevation) * np.cos(azimuth)
12
-
13
- # Calculate camera position, target, and up vectors
14
- camera_pos = np.array([x, y, z])
15
- target = np.array([0, 0, 0])
16
- up = np.array([0, 1, 0])
17
-
18
- # Construct view matrix
19
- forward = target - camera_pos
20
- forward /= np.linalg.norm(forward)
21
- right = np.cross(forward, up)
22
- right /= np.linalg.norm(right)
23
- new_up = np.cross(right, forward)
24
- new_up /= np.linalg.norm(new_up)
25
- cam2world = np.eye(4)
26
- cam2world[:3, :3] = np.array([right, new_up, -forward]).T
27
- cam2world[:3, 3] = camera_pos
28
- return cam2world
29
-
30
-
31
- def convert_opengl_to_blender(camera_matrix):
32
- if isinstance(camera_matrix, np.ndarray):
33
- # Construct transformation matrix to convert from OpenGL space to Blender space
34
- flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
35
- camera_matrix_blender = np.dot(flip_yz, camera_matrix)
36
- else:
37
- # Construct transformation matrix to convert from OpenGL space to Blender space
38
- flip_yz = torch.tensor(
39
- [[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
40
- )
41
- if camera_matrix.ndim == 3:
42
- flip_yz = flip_yz.unsqueeze(0)
43
- camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
44
- return camera_matrix_blender
45
-
46
-
47
- def normalize_camera(camera_matrix):
48
- """normalize the camera location onto a unit-sphere"""
49
- if isinstance(camera_matrix, np.ndarray):
50
- camera_matrix = camera_matrix.reshape(-1, 4, 4)
51
- translation = camera_matrix[:, :3, 3]
52
- translation = translation / (
53
- np.linalg.norm(translation, axis=1, keepdims=True) + 1e-8
54
- )
55
- camera_matrix[:, :3, 3] = translation
56
- else:
57
- camera_matrix = camera_matrix.reshape(-1, 4, 4)
58
- translation = camera_matrix[:, :3, 3]
59
- translation = translation / (
60
- torch.norm(translation, dim=1, keepdim=True) + 1e-8
61
- )
62
- camera_matrix[:, :3, 3] = translation
63
- return camera_matrix.reshape(-1, 16)
64
-
65
-
66
- def get_camera(
67
- num_frames,
68
- elevation=15,
69
- azimuth_start=0,
70
- azimuth_span=360,
71
- blender_coord=True,
72
- extra_view=False,
73
- ):
74
- angle_gap = azimuth_span / num_frames
75
- cameras = []
76
- for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
77
- camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
78
- if blender_coord:
79
- camera_matrix = convert_opengl_to_blender(camera_matrix)
80
- cameras.append(camera_matrix.flatten())
81
-
82
- if extra_view:
83
- dim = len(cameras[0])
84
- cameras.append(np.zeros(dim))
85
- return torch.tensor(np.stack(cameras, 0)).float()
86
-
87
-
88
- def get_camera_for_index(data_index):
89
- """
90
- 按照当前我们的数据格式, 以000为正对我们的情况:
91
- 000是正面, ev: 0, azimuth: 0
92
- 001是左边, ev: 0, azimuth: -90
93
- 002是下面, ev: -90, azimuth: 0
94
- 003是背面, ev: 0, azimuth: 180
95
- 004是右边, ev: 0, azimuth: 90
96
- 005是上面, ev: 90, azimuth: 0
97
- """
98
- params = [(0, 0), (0, -90), (-90, 0), (0, 180), (0, 90), (90, 0)]
99
- return get_camera(1, *params[data_index])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv.yaml DELETED
@@ -1,61 +0,0 @@
1
- model:
2
- target: imagedream.ldm.interface.LatentDiffusionInterface
3
- params:
4
- linear_start: 0.00085
5
- linear_end: 0.0120
6
- timesteps: 1000
7
- scale_factor: 0.18215
8
- parameterization: "eps"
9
-
10
- unet_config:
11
- target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModel
12
- params:
13
- image_size: 32 # unused
14
- in_channels: 4
15
- out_channels: 4
16
- model_channels: 320
17
- attention_resolutions: [ 4, 2, 1 ]
18
- num_res_blocks: 2
19
- channel_mult: [ 1, 2, 4, 4 ]
20
- num_head_channels: 64 # need to fix for flash-attn
21
- use_spatial_transformer: True
22
- use_linear_in_transformer: True
23
- transformer_depth: 1
24
- context_dim: 1024
25
- use_checkpoint: False
26
- legacy: False
27
- camera_dim: 16
28
- with_ip: True
29
- ip_dim: 16 # ip token length
30
- ip_mode: "local_resample"
31
-
32
- vae_config:
33
- target: imagedream.ldm.models.autoencoder.AutoencoderKL
34
- params:
35
- embed_dim: 4
36
- monitor: val/rec_loss
37
- ddconfig:
38
- #attn_type: "vanilla-xformers"
39
- double_z: true
40
- z_channels: 4
41
- resolution: 256
42
- in_channels: 3
43
- out_ch: 3
44
- ch: 128
45
- ch_mult:
46
- - 1
47
- - 2
48
- - 4
49
- - 4
50
- num_res_blocks: 2
51
- attn_resolutions: []
52
- dropout: 0.0
53
- lossconfig:
54
- target: torch.nn.Identity
55
-
56
- clip_config:
57
- target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
58
- params:
59
- freeze: True
60
- layer: "penultimate"
61
- ip_mode: "local_resample"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
apps/third_party/CRM/imagedream/configs/sd_v2_base_ipmv_ch8.yaml DELETED
@@ -1,61 +0,0 @@
1
- model:
2
- target: imagedream.ldm.interface.LatentDiffusionInterface
3
- params:
4
- linear_start: 0.00085
5
- linear_end: 0.0120
6
- timesteps: 1000
7
- scale_factor: 0.18215
8
- parameterization: "eps"
9
-
10
- unet_config:
11
- target: imagedream.ldm.modules.diffusionmodules.openaimodel.MultiViewUNetModel
12
- params:
13
- image_size: 32 # unused
14
- in_channels: 8
15
- out_channels: 8
16
- model_channels: 320
17
- attention_resolutions: [ 4, 2, 1 ]
18
- num_res_blocks: 2
19
- channel_mult: [ 1, 2, 4, 4 ]
20
- num_head_channels: 64 # need to fix for flash-attn
21
- use_spatial_transformer: True
22
- use_linear_in_transformer: True
23
- transformer_depth: 1
24
- context_dim: 1024
25
- use_checkpoint: False
26
- legacy: False
27
- camera_dim: 16
28
- with_ip: True
29
- ip_dim: 16 # ip token length
30
- ip_mode: "local_resample"
31
-
32
- vae_config:
33
- target: imagedream.ldm.models.autoencoder.AutoencoderKL
34
- params:
35
- embed_dim: 4
36
- monitor: val/rec_loss
37
- ddconfig:
38
- #attn_type: "vanilla-xformers"
39
- double_z: true
40
- z_channels: 4
41
- resolution: 256
42
- in_channels: 3
43
- out_ch: 3
44
- ch: 128
45
- ch_mult:
46
- - 1
47
- - 2
48
- - 4
49
- - 4
50
- num_res_blocks: 2
51
- attn_resolutions: []
52
- dropout: 0.0
53
- lossconfig:
54
- target: torch.nn.Identity
55
-
56
- clip_config:
57
- target: imagedream.ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
58
- params:
59
- freeze: True
60
- layer: "penultimate"
61
- ip_mode: "local_resample"