wyysf commited on
Commit
f6849c0
·
1 Parent(s): f4fae1d
Files changed (2) hide show
  1. apps/mv_models.py +73 -67
  2. gradio_app.py +1 -1
apps/mv_models.py CHANGED
@@ -20,98 +20,105 @@ import spaces
20
 
21
  parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
22
 
23
-
24
  class GenMVImage(object):
25
  def __init__(self, device):
26
  self.seed = 1024
27
  self.guidance_scale = 7.5
28
  self.step = 50
 
29
  self.device = device
30
-
 
 
31
  from .third_party.CRM.pipelines import TwoStagePipeline
32
  stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
33
  stage1_sampler_config = stage1_config.sampler
34
  stage1_model_config = stage1_config.models
35
  stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
36
  stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
37
- self.crm_pipeline = TwoStagePipeline(
38
- stage1_model_config,
39
- stage1_sampler_config,
40
- device=self.device,
41
- dtype=torch.float16
42
- )
43
- self.crm_pipeline.set_seed(self.seed)
44
-
45
- # sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
46
- # from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
47
- # self.wonder3d_pipeline = DiffusionPipeline.from_pretrained(
48
- # 'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
49
- # custom_pipeline='flamehaze1115/wonder3d-pipeline',
50
- # torch_dtype=torch.float16
51
- # )
52
- # self.wonder3d_pipeline.unet.enable_xformers_memory_efficient_attention()
53
- # self.wonder3d_pipeline.to(self.device)
54
- # self.wonder3d_pipeline.set_progress_bar_config(disable=True)
55
-
56
-
57
- # sys.path.append(f"{parent_dir}/apps/third_party/mvdream_diffusers")
58
- # from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
59
- # self.mvdream_pipeline = MVDreamPipeline.from_pretrained(
60
- # "ashawkey/mvdream-sd2.1-diffusers", # remote weights
61
- # torch_dtype=torch.float16,
62
- # trust_remote_code=True,
63
- # )
64
- # self.mvdream_pipeline = self.mvdream_pipeline.to(self.device)
65
- # self.imagedream_pipeline = MVDreamPipeline.from_pretrained(
66
- # "ashawkey/imagedream-ipmv-diffusers", # remote weights
67
- # torch_dtype=torch.float16,
68
- # trust_remote_code=True,
69
- # )
70
- # self.imagedream_pipeline = self.imagedream_pipeline.to(self.device)
71
-
72
-
73
- @spaces.GPU
74
- def gen_image_from_crm(self, image):
75
- rt_dict = self.crm_pipeline(
76
- image,
77
- scale=self.guidance_scale,
78
- step=self.step
79
- )
80
  mv_imgs = rt_dict["stage1_images"]
81
  return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
82
 
83
  @spaces.GPU
84
  def gen_image_from_mvdream(self, image, text):
 
85
  if image is None:
86
- mv_imgs = self.mvdream_pipeline(
87
- text,
88
- negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
89
- num_inference_steps=self.step,
90
- guidance_scale=self.guidance_scale,
91
- generator = torch.Generator(self.device).manual_seed(self.seed)
92
- )
93
- elif text is not None:
 
 
 
 
 
 
 
 
 
 
94
  image = np.array(image)
95
  image = image.astype(np.float32) / 255.0
96
  image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
97
-
98
- mv_imgs = self.imagedream_pipeline(
99
- text,
100
- image,
101
- negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
102
- num_inference_steps=self.step,
103
- guidance_scale=self.guidance_scale,
104
- generator = torch.Generator(self.device).manual_seed(self.seed)
105
- )
 
 
 
 
 
 
 
 
 
106
  return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
107
 
108
  @spaces.GPU
109
  def gen_image_from_wonder3d(self, image, crop_size):
 
 
110
 
111
  weight_dtype = torch.float16
112
  batch = prepare_data(image, crop_size)
113
 
114
- generator = torch.Generator(device=self.wonder3d_pipeline.unet.device).manual_seed(self.seed)
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  # repeat (2B, Nv, 3, H, W)
116
  imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)
117
 
@@ -126,9 +133,8 @@ class GenMVImage(object):
126
  imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
127
  # (B*Nv, Nce)
128
 
129
- out = self.wonder3d_pipeline(
130
  imgs_in,
131
- # camera_embeddings,
132
  generator=generator,
133
  guidance_scale=self.guidance_scale,
134
  num_inference_steps=self.step,
@@ -146,7 +152,7 @@ class GenMVImage(object):
146
 
147
  mv_imgs = images_pred
148
  return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
149
-
150
  @spaces.GPU
151
  def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
152
  self.seed = seed
@@ -155,6 +161,6 @@ class GenMVImage(object):
155
  if mvimg_model.upper() == "CRM":
156
  return self.gen_image_from_crm(image)
157
  elif mvimg_model.upper() == "IMAGEDREAM":
158
- return self.gen_image_from_mvdream(image, None)
159
  elif mvimg_model.upper() == "WONDER3D":
160
  return self.gen_image_from_wonder3d(image, crop_size)
 
20
 
21
  parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
22
 
23
+
24
  class GenMVImage(object):
25
  def __init__(self, device):
26
  self.seed = 1024
27
  self.guidance_scale = 7.5
28
  self.step = 50
29
+ self.pipelines = {}
30
  self.device = device
31
+
32
+ @spaces.GPU
33
+ def gen_image_from_crm(self, image):
34
  from .third_party.CRM.pipelines import TwoStagePipeline
35
  stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
36
  stage1_sampler_config = stage1_config.sampler
37
  stage1_model_config = stage1_config.models
38
  stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
39
  stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
40
+ if "crm" in self.pipelines.keys():
41
+ pipeline = self.pipelines['crm']
42
+ else:
43
+ self.pipelines['crm'] = TwoStagePipeline(
44
+ stage1_model_config,
45
+ stage1_sampler_config,
46
+ device=self.device,
47
+ dtype=torch.float16
48
+ )
49
+ pipeline = self.pipelines['crm']
50
+ pipeline.set_seed(self.seed)
51
+ rt_dict = pipeline(image, scale=self.guidance_scale, step=self.step)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  mv_imgs = rt_dict["stage1_images"]
53
  return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
54
 
55
  @spaces.GPU
56
  def gen_image_from_mvdream(self, image, text):
57
+ from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
58
  if image is None:
59
+ if "mvdream" in self.pipelines.keys():
60
+ pipe_MVDream = self.pipelines['mvdream']
61
+ else:
62
+ self.pipelines['mvdream'] = MVDreamPipeline.from_pretrained(
63
+ "ashawkey/mvdream-sd2.1-diffusers", # remote weights
64
+ torch_dtype=torch.float16,
65
+ trust_remote_code=True,
66
+ )
67
+ self.pipelines['mvdream'] = self.pipelines['mvdream'].to(self.device)
68
+ pipe_MVDream = self.pipelines['mvdream']
69
+ mv_imgs = pipe_MVDream(
70
+ text,
71
+ negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
72
+ num_inference_steps=self.step,
73
+ guidance_scale=self.guidance_scale,
74
+ generator = torch.Generator(self.device).manual_seed(self.seed)
75
+ )
76
+ else:
77
  image = np.array(image)
78
  image = image.astype(np.float32) / 255.0
79
  image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
80
+ if "imagedream" in self.pipelines.keys():
81
+ pipe_imagedream = self.pipelines['imagedream']
82
+ else:
83
+ self.pipelines['imagedream'] = MVDreamPipeline.from_pretrained(
84
+ "ashawkey/imagedream-ipmv-diffusers", # remote weights
85
+ torch_dtype=torch.float16,
86
+ trust_remote_code=True,
87
+ )
88
+ self.pipelines['imagedream'] = self.pipelines['imagedream'].to(self.device)
89
+ pipe_imagedream = self.pipelines['imagedream']
90
+ mv_imgs = pipe_imagedream(
91
+ text,
92
+ image,
93
+ negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
94
+ num_inference_steps=self.step,
95
+ guidance_scale=self.guidance_scale,
96
+ generator = torch.Generator(self.device).manual_seed(self.seed)
97
+ )
98
  return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
99
 
100
  @spaces.GPU
101
  def gen_image_from_wonder3d(self, image, crop_size):
102
+ sys.path.append(f"{parent_dir}/apps/third_party/Wonder3D")
103
+ from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
104
 
105
  weight_dtype = torch.float16
106
  batch = prepare_data(image, crop_size)
107
 
108
+ if "wonder3d" in self.pipelines.keys():
109
+ pipeline = self.pipelines['wonder3d']
110
+ else:
111
+ self.pipelines['wonder3d'] = DiffusionPipeline.from_pretrained(
112
+ 'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
113
+ custom_pipeline='flamehaze1115/wonder3d-pipeline',
114
+ torch_dtype=torch.float16
115
+ )
116
+ self.pipelines['wonder3d'].unet.enable_xformers_memory_efficient_attention()
117
+ self.pipelines['wonder3d'].to(self.device)
118
+ self.pipelines['wonder3d'].set_progress_bar_config(disable=True)
119
+ pipeline = self.pipelines['wonder3d']
120
+
121
+ generator = torch.Generator(device=pipeline.unet.device).manual_seed(self.seed)
122
  # repeat (2B, Nv, 3, H, W)
123
  imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)
124
 
 
133
  imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
134
  # (B*Nv, Nce)
135
 
136
+ out = pipeline(
137
  imgs_in,
 
138
  generator=generator,
139
  guidance_scale=self.guidance_scale,
140
  num_inference_steps=self.step,
 
152
 
153
  mv_imgs = images_pred
154
  return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
155
+
156
  @spaces.GPU
157
  def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
158
  self.seed = seed
 
161
  if mvimg_model.upper() == "CRM":
162
  return self.gen_image_from_crm(image)
163
  elif mvimg_model.upper() == "IMAGEDREAM":
164
+ return self.gen_image_from_mvdream(image, text)
165
  elif mvimg_model.upper() == "WONDER3D":
166
  return self.gen_image_from_wonder3d(image, crop_size)
gradio_app.py CHANGED
@@ -141,8 +141,8 @@ if __name__=="__main__":
141
  "Auto Remove Background": "Auto Remove Background",
142
  "Original Image": "Original Image",
143
  })
144
- # mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
145
  mvimg_model_config_list = ["CRM"]
 
146
 
147
  # for 3D latent set diffusion
148
  ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")
 
141
  "Auto Remove Background": "Auto Remove Background",
142
  "Original Image": "Original Image",
143
  })
 
144
  mvimg_model_config_list = ["CRM"]
145
+ # mvimg_model_config_list = ["CRM", "ImageDream", "Wonder3D"]
146
 
147
  # for 3D latent set diffusion
148
  ckpt_path = hf_hub_download(repo_id="wyysf/CraftsMan", filename="image-to-shape-diffusion/clip-mvrgb-modln-l256-e64-ne8-nd16-nl6/model.ckpt", repo_type="model")