general { base_exp_dir = ./exp/neus/CASE_NAME/ recording = [ ./, ./models ] } dataset { data_dir = ./outputs/ object_name = CASE_NAME object_viewidx = 1 imSize = [256, 256] load_color = True stage = coarse mtype = mlp normal_system: front num_views = 6 } train { learning_rate = 5e-4 learning_rate_alpha = 0.05 end_iter = 1000 # longer time, better result. 1w will be ok for most cases batch_size = 512 validate_resolution_level = 1 warm_up_end = 500 anneal_end = 0 use_white_bkgd = True save_freq = 5000 val_freq = 5000 val_mesh_freq =5000 report_freq = 100 color_weight = 1.0 igr_weight = 0.1 mask_weight = 1.0 normal_weight = 1.0 sparse_weight = 0.1 } model { nerf { D = 8, d_in = 4, d_in_view = 3, W = 256, multires = 10, multires_view = 4, output_ch = 4, skips=[4], use_viewdirs=True } sdf_network { d_out = 257 d_in = 3 d_hidden = 256 n_layers = 8 skip_in = [4] multires = 6 bias = 0.5 scale = 1.0 geometric_init = True weight_norm = True } variance_network { init_val = 0.3 } rendering_network { d_feature = 256 mode = no_view_dir d_in = 6 d_out = 3 d_hidden = 256 n_layers = 4 weight_norm = True multires_view = 0 squeeze_out = True } neus_renderer { n_samples = 64 n_importance = 64 n_outside = 0 up_sample_steps = 4 # 1 for simple coarse-to-fine sampling perturb = 1.0 sdf_decay_param = 100 } }