import spaces
import argparse
import os
import json
import torch
import sys
import base64
import numpy as np
from huggingface_hub import hf_hub_download
import PIL
from PIL import Image
from collections import OrderedDict
import trimesh
import rembg
import requests
import gradio as gr
from typing import Any
proj_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.join(proj_dir))
import tempfile
import craftsman
from craftsman.utils.config import ExperimentConfig, load_config
_TITLE = '''CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner'''
_DESCRIPTION = '''
Important: If you have your own data and want to collaborate, we are welcom to any contact.
Select or upload a image, then just click 'Generate'.
By mimicking the artist/craftsman modeling workflow, we propose CraftsMan (aka 匠心) that uses 3D Latent Set Diffusion Model that directly generate coarse meshes,
then a multi-view normal enhanced image generation model is used to refine the mesh.
We provide the coarse 3D diffusion part here.
If you found CraftsMan is helpful, please help to ⭐ the
Github Repo. Thanks!
*If you have your own multi-view images, you can directly upload it.
'''
_CITE_ = r"""
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{li2024craftsman,
author = {Weiyu Li and Jiarui Liu and Hongyu Yan and Rui Chen and Yixun Liang and Xuelin Chen and Ping Tan and Xiaoxiao Long},
title = {CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner},
journal = {arXiv preprint arXiv:2405.14979},
year = {2024},
}
```
🤗 **Acknowledgements**
We use
Instant Meshes to remesh the generated mesh to a lower face count, thanks to the authors for the great work.
📋 **License**
CraftsMan is under [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.en.html), so any downstream solution and products (including cloud services) that include CraftsMan code or a trained model (both pretrained or custom trained) inside it should be open-sourced to comply with the AGPL conditions. If you have any questions about the usage of CraftsMan, please contact us first.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at
weiyuli.cn@gmail.com.
"""
model = None
cached_dir = None
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
class RMBG(object):
def __init__(self):
pass
def rmbg_rembg(self, input_image, background_color):
def _rembg_remove(
image: PIL.Image.Image,
rembg_session = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# explain why current do not rm bg
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
background = Image.new("RGBA", image.size, (*background_color, 0))
image = Image.alpha_composite(background, image)
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
# calculate the min bbox of the image
alpha = image.split()[-1]
image = image.crop(alpha.getbbox())
return image
return _rembg_remove(input_image, None, force_remove=True)
def run(self, rm_type, image_file, foreground_ratio, background_choice, background_color=(255, 255, 255)):
image = Image.open(image_file)
if "Original" in background_choice:
return image
else:
if background_choice == "Alpha as mask":
alpha = image.split()[-1]
image = image.crop(alpha.getbbox())
elif "Remove" in background_choice:
if rm_type.upper() == "REMBG":
image = self.rmbg_rembg(image, background_color=background_color)
else:
return -1
# Calculate the new size after rescaling
new_size = tuple(int(dim * foreground_ratio) for dim in image.size)
# Resize the image while maintaining the aspect ratio
resized_image = image.resize(new_size)
# Create a new image with the original size and white background
padded_image = PIL.Image.new("RGBA", image.size, (*background_color, 0))
paste_position = ((image.width - resized_image.width) // 2, (image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
# expand image to 1:1
width, height = padded_image.size
if width == height:
return padded_image
new_size = (max(width, height), max(width, height))
image = PIL.Image.new("RGBA", new_size, (*background_color, 1))
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
image.paste(padded_image, paste_position)
filepath = tempfile.NamedTemporaryFile(suffix=f".png", delete=False).name
image.save(filepath)
return filepath
# @spaces.GPU
def image2mesh(image: Any,
more: bool = False,
scheluder_name: str ="DDIMScheduler",
guidance_scale: int = 7.5,
steps: int = 50,
seed: int = 4,
target_face_count: int = 2000,
octree_depth: int = 7):
# global rmbg
# processed_image = rmbg.run(rm_type, image, foreground_ratio, background_choice)
processed_image = Image.open(image)
sample_inputs = {
"image": [
processed_image
]
}
global model
latents = model.sample(
sample_inputs,
sample_times=1,
steps=steps,
guidance_scale=guidance_scale,
seed=seed
)[0]
# decode the latents to mesh
box_v = 1.1
mesh_outputs, _ = model.shape_model.extract_geometry(
latents,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth
)
assert len(mesh_outputs) == 1, "Only support single mesh output for gradio demo"
mesh = trimesh.Trimesh(mesh_outputs[0][0], mesh_outputs[0][1])
# filepath = f"{cached_dir}/{time.time()}.obj"
filepath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name
mesh.export(filepath, include_normals=True)
if 'Remesh' in more:
remeshed_filepath = tempfile.NamedTemporaryFile(suffix=f"_remeshed.obj", delete=False).name
print("Remeshing with Instant Meshes...")
command = f"{proj_dir}/apps/third_party/InstantMeshes {filepath} -f {target_face_count} -o {remeshed_filepath}"
os.system(command)
filepath = remeshed_filepath
return filepath
def mesh2texture(mesh_file, image_file):
headers = {'Content-Type': 'application/json'}
server_url = "114.249.238.184:34119"
with open(image_file, 'rb') as f:
image_bytes = f.read()
with open(mesh_file, 'rb') as f:
mesh_bytes = f.read()
request = {
'png_base64_image': base64.b64encode(image_bytes).decode('utf-8'),
'glb_base64_mesh': base64.b64encode(mesh_bytes).decode('utf-8'),
}
response = requests.post(
url=f"http://{server_url}/generate_texture",
headers=headers,
data=json.dumps(request),
).json()
mesh_bytes = base64.b64decode(response['glb_base64_mesh'])
filepath = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False).name
with open(filepath, 'wb') as f:
f.write(mesh_bytes)
return filepath
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="", help="Path to the object file",)
parser.add_argument("--cached_dir", type=str, default="")
parser.add_argument("--device", type=int, default=0)
args = parser.parse_args()
cached_dir = args.cached_dir
if cached_dir != "":
os.makedirs(args.cached_dir, exist_ok=True)
device = torch.device(f"cuda:{args.device}" if torch.cuda.is_available() else "cpu")
print(f"using device: {device}")
# for input image
background_choice = OrderedDict({
"Alpha as Mask": "Alpha as Mask",
"Auto Remove Background": "Auto Remove Background",
"Original Image": "Original Image",
})
# for 3D latent set diffusion
if args.model_path == "":
ckpt_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="model.ckpt", repo_type="model")
config_path = hf_hub_download(repo_id="craftsman3d/craftsman-v1-5", filename="config.yaml", repo_type="model")
else:
ckpt_path = os.path.join(args.model_path, "model.ckpt")
config_path = os.path.join(args.model_path, "config.yaml")
scheluder_dict = OrderedDict({
"DDIMScheduler": 'diffusers.schedulers.DDIMScheduler',
# "DPMSolverMultistepScheduler": 'diffusers.schedulers.DPMSolverMultistepScheduler', # not support yet
# "UniPCMultistepScheduler": 'diffusers.schedulers.UniPCMultistepScheduler', # not support yet
})
# main GUI
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column(scale=2):
with gr.Column():
# input image
with gr.Row():
image_input = gr.Image(
label="Image Input",
image_mode="RGBA",
sources="upload",
type="filepath",
)
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Row():
gr.Markdown('''Try a different
seed and MV Model for better results. Good Luck :)''')
with gr.Row():
seed = gr.Number(42, label='Seed', show_label=True)
more = gr.CheckboxGroup(["Remesh"], label="More", show_label=False)
target_face_count = gr.Number(2000, label='Target Face Count', show_label=True)
with gr.Accordion('Advanced options', open=False):
with gr.Row():
background_choice = gr.Dropdown(label="Backgroud Choice", value="Auto Remove Background",choices=list(background_choice.keys()))
rmbg_type = gr.Dropdown(label="Backgroud Remove Type", value="rembg",choices=['sam', "rembg"])
foreground_ratio = gr.Slider(label="Foreground Ratio", value=0.95, minimum=0.5, maximum=1.0, step=0.01)
with gr.Row():
guidance_scale = gr.Number(label="3D Guidance Scale", value=7.5, minimum=3.0, maximum=10.0)
steps = gr.Number(value=50, minimum=20, maximum=100, label="3D Sample Steps")
with gr.Row():
scheduler = gr.Dropdown(label="scheluder", value="DDIMScheduler",choices=list(scheluder_dict.keys()))
octree_depth = gr.Slider(label="Octree Depth", value=7, minimum=4, maximum=8, step=1)
with gr.Row():
gr.Examples(
examples=[os.path.join("./examples", i) for i in os.listdir("./examples")],
inputs=[image_input],
examples_per_page=8
)
with gr.Column(scale=4):
with gr.Row():
output_model_obj = gr.Model3D(
label="Output Model (GLB Format)",
camera_position=(90.0, 90.0, 3.5),
interactive=False,
)
with gr.Row():
output_model_tex = gr.Model3D(
label="Output Textured Model (GLB Format)",
camera_position=(90.0, 90.0, 3.5),
interactive=False,
)
# with gr.Row():
# gr.Markdown('''*please note that the model is fliped due to the gradio viewer, please download the obj file and you will get the correct orientation.''')
gr.Markdown(_CITE_)
# outputs = [output_model_obj]
# outputs_tex = [output_model_tex]
rmbg = RMBG()
# model = load_model(ckpt_path, config_path, device)
cfg = load_config(config_path)
model = craftsman.find(cfg.system_type)(cfg.system)
print(f"Restoring states from the checkpoint path at {ckpt_path} with config {cfg}")
ckpt = torch.load(ckpt_path, map_location=torch.device('cpu'))
model.load_state_dict(
ckpt["state_dict"] if "state_dict" in ckpt else ckpt,
)
model = model.to(device).eval()
run_btn.click(fn=check_input_image, inputs=[image_input]
).success(
fn=rmbg.run,
inputs=[rmbg_type, image_input, foreground_ratio, background_choice],
outputs=[image_input]
).success(
fn=image2mesh,
inputs=[image_input, more, scheduler, guidance_scale, steps, seed, target_face_count, octree_depth],
outputs=[output_model_obj],
api_name="generate_img2obj"
).success(
fn=mesh2texture,
inputs=[output_model_obj, image_input],
outputs=[output_model_tex],
api_name="generate_obj2tex"
)
demo.queue().launch(share=True, allowed_paths=[args.cached_dir])