Spaces:
Runtime error
Runtime error
Adding the start of some privateGPT code
Browse files
app.py
CHANGED
@@ -1,8 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
|
4 |
def greet(name):
|
5 |
return torch.cuda.is_available()
|
6 |
|
7 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import os
|
4 |
|
5 |
def greet(name):
|
6 |
return torch.cuda.is_available()
|
7 |
|
8 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
9 |
+
|
10 |
+
if 'HUGGINGFACE_SPACE_ID' in os.environ:
|
11 |
+
# Running in Hugging Face Space
|
12 |
+
gradio_share = False
|
13 |
+
else:
|
14 |
+
# Running on desktop
|
15 |
+
gradio_share = True
|
16 |
+
|
17 |
+
|
18 |
+
iface.launch(share=gradio_share)
|
constants.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from chromadb.config import Settings
|
4 |
+
|
5 |
+
load_dotenv()
|
6 |
+
|
7 |
+
# Define the folder for storing database
|
8 |
+
PERSIST_DIRECTORY = os.environ.get('PERSIST_DIRECTORY')
|
9 |
+
|
10 |
+
# Define the Chroma settings
|
11 |
+
CHROMA_SETTINGS = Settings(
|
12 |
+
chroma_db_impl='duckdb+parquet',
|
13 |
+
persist_directory=PERSIST_DIRECTORY,
|
14 |
+
anonymized_telemetry=False
|
15 |
+
)
|
ingest.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
from typing import List
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from multiprocessing import Pool
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from langchain.document_loaders import (
|
10 |
+
CSVLoader,
|
11 |
+
EverNoteLoader,
|
12 |
+
PDFMinerLoader,
|
13 |
+
TextLoader,
|
14 |
+
UnstructuredEmailLoader,
|
15 |
+
UnstructuredEPubLoader,
|
16 |
+
UnstructuredHTMLLoader,
|
17 |
+
UnstructuredMarkdownLoader,
|
18 |
+
UnstructuredODTLoader,
|
19 |
+
UnstructuredPowerPointLoader,
|
20 |
+
UnstructuredWordDocumentLoader,
|
21 |
+
)
|
22 |
+
|
23 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
24 |
+
from langchain.vectorstores import Chroma
|
25 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
26 |
+
from langchain.docstore.document import Document
|
27 |
+
from constants import CHROMA_SETTINGS
|
28 |
+
|
29 |
+
|
30 |
+
load_dotenv()
|
31 |
+
|
32 |
+
|
33 |
+
# Load environment variables
|
34 |
+
persist_directory = os.environ.get('PERSIST_DIRECTORY')
|
35 |
+
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
36 |
+
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME')
|
37 |
+
chunk_size = 500
|
38 |
+
chunk_overlap = 50
|
39 |
+
|
40 |
+
|
41 |
+
# Custom document loaders
|
42 |
+
class MyElmLoader(UnstructuredEmailLoader):
|
43 |
+
"""Wrapper to fallback to text/plain when default does not work"""
|
44 |
+
|
45 |
+
def load(self) -> List[Document]:
|
46 |
+
"""Wrapper adding fallback for elm without html"""
|
47 |
+
try:
|
48 |
+
try:
|
49 |
+
doc = UnstructuredEmailLoader.load(self)
|
50 |
+
except ValueError as e:
|
51 |
+
if 'text/html content not found in email' in str(e):
|
52 |
+
# Try plain text
|
53 |
+
self.unstructured_kwargs["content_source"]="text/plain"
|
54 |
+
doc = UnstructuredEmailLoader.load(self)
|
55 |
+
else:
|
56 |
+
raise
|
57 |
+
except Exception as e:
|
58 |
+
# Add file_path to exception message
|
59 |
+
raise type(e)(f"{self.file_path}: {e}") from e
|
60 |
+
|
61 |
+
return doc
|
62 |
+
|
63 |
+
|
64 |
+
# Map file extensions to document loaders and their arguments
|
65 |
+
LOADER_MAPPING = {
|
66 |
+
".csv": (CSVLoader, {}),
|
67 |
+
# ".docx": (Docx2txtLoader, {}),
|
68 |
+
".doc": (UnstructuredWordDocumentLoader, {}),
|
69 |
+
".docx": (UnstructuredWordDocumentLoader, {}),
|
70 |
+
".enex": (EverNoteLoader, {}),
|
71 |
+
".eml": (MyElmLoader, {}),
|
72 |
+
".epub": (UnstructuredEPubLoader, {}),
|
73 |
+
".html": (UnstructuredHTMLLoader, {}),
|
74 |
+
".md": (UnstructuredMarkdownLoader, {}),
|
75 |
+
".odt": (UnstructuredODTLoader, {}),
|
76 |
+
".pdf": (PDFMinerLoader, {}),
|
77 |
+
".ppt": (UnstructuredPowerPointLoader, {}),
|
78 |
+
".pptx": (UnstructuredPowerPointLoader, {}),
|
79 |
+
".txt": (TextLoader, {"encoding": "utf8"}),
|
80 |
+
# Add more mappings for other file extensions and loaders as needed
|
81 |
+
}
|
82 |
+
|
83 |
+
|
84 |
+
def load_single_document(file_path: str) -> Document:
|
85 |
+
ext = "." + file_path.rsplit(".", 1)[-1]
|
86 |
+
if ext in LOADER_MAPPING:
|
87 |
+
loader_class, loader_args = LOADER_MAPPING[ext]
|
88 |
+
loader = loader_class(file_path, **loader_args)
|
89 |
+
return loader.load()[0]
|
90 |
+
|
91 |
+
raise ValueError(f"Unsupported file extension '{ext}'")
|
92 |
+
|
93 |
+
|
94 |
+
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
|
95 |
+
"""
|
96 |
+
Loads all documents from the source documents directory, ignoring specified files
|
97 |
+
"""
|
98 |
+
all_files = []
|
99 |
+
for ext in LOADER_MAPPING:
|
100 |
+
all_files.extend(
|
101 |
+
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
|
102 |
+
)
|
103 |
+
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
|
104 |
+
|
105 |
+
with Pool(processes=os.cpu_count()) as pool:
|
106 |
+
results = []
|
107 |
+
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
|
108 |
+
for i, doc in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
|
109 |
+
results.append(doc)
|
110 |
+
pbar.update()
|
111 |
+
|
112 |
+
return results
|
113 |
+
|
114 |
+
def process_documents(ignored_files: List[str] = []) -> List[Document]:
|
115 |
+
"""
|
116 |
+
Load documents and split in chunks
|
117 |
+
"""
|
118 |
+
print(f"Loading documents from {source_directory}")
|
119 |
+
documents = load_documents(source_directory, ignored_files)
|
120 |
+
if not documents:
|
121 |
+
print("No new documents to load")
|
122 |
+
exit(0)
|
123 |
+
print(f"Loaded {len(documents)} new documents from {source_directory}")
|
124 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
125 |
+
texts = text_splitter.split_documents(documents)
|
126 |
+
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
|
127 |
+
return texts
|
128 |
+
|
129 |
+
def does_vectorstore_exist(persist_directory: str) -> bool:
|
130 |
+
"""
|
131 |
+
Checks if vectorstore exists
|
132 |
+
"""
|
133 |
+
if os.path.exists(os.path.join(persist_directory, 'index')):
|
134 |
+
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
|
135 |
+
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
|
136 |
+
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
|
137 |
+
# At least 3 documents are needed in a working vectorstore
|
138 |
+
if len(list_index_files) > 3:
|
139 |
+
return True
|
140 |
+
return False
|
141 |
+
|
142 |
+
def main():
|
143 |
+
# Create embeddings
|
144 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
145 |
+
|
146 |
+
if does_vectorstore_exist(persist_directory):
|
147 |
+
# Update and store locally vectorstore
|
148 |
+
print(f"Appending to existing vectorstore at {persist_directory}")
|
149 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
150 |
+
collection = db.get()
|
151 |
+
texts = process_documents([metadata['source'] for metadata in collection['metadatas']])
|
152 |
+
print(f"Creating embeddings. May take some minutes...")
|
153 |
+
db.add_documents(texts)
|
154 |
+
else:
|
155 |
+
# Create and store locally vectorstore
|
156 |
+
print("Creating new vectorstore")
|
157 |
+
texts = process_documents()
|
158 |
+
print(f"Creating embeddings. May take some minutes...")
|
159 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
|
160 |
+
db.persist()
|
161 |
+
db = None
|
162 |
+
|
163 |
+
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
|
164 |
+
|
165 |
+
|
166 |
+
if __name__ == "__main__":
|
167 |
+
main()
|
init.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
init:
|
2 |
+
- python ingest.py
|