File size: 53,593 Bytes
a03d34d
cd39c08
 
 
 
 
35b1cf8
cd39c08
a03d34d
 
35b1cf8
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
 
 
 
 
4c19db8
 
 
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
26a5ac0
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
 
 
 
 
 
 
e164e63
35b1cf8
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
62387de
cd39c08
 
 
 
 
 
 
 
 
 
a03d34d
 
cd39c08
 
 
 
62387de
cd39c08
 
 
 
 
 
 
 
a03d34d
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ceef7d
cd39c08
 
9ceef7d
cd39c08
a03d34d
 
cd39c08
 
 
 
 
35b1cf8
 
cd39c08
35b1cf8
 
 
cd39c08
 
35b1cf8
 
cd39c08
 
 
 
 
 
 
 
35b1cf8
cd39c08
35b1cf8
 
cd39c08
a03d34d
 
cd39c08
 
 
 
 
 
35b1cf8
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
cd39c08
 
 
 
 
35b1cf8
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03d34d
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
35b1cf8
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
 
cd39c08
 
 
 
 
 
35b1cf8
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35b1cf8
cd39c08
 
35b1cf8
 
 
cd39c08
 
 
 
a03d34d
 
cd39c08
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
import spaces
import json
import gradio as gr
from huggingface_hub import HfApi
import os
from pathlib import Path
from PIL import Image


from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
    HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS,
    directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)


MODEL_TYPE_DICT = {
    "diffusers:StableDiffusionPipeline": "SD 1.5",
    "diffusers:StableDiffusionXLPipeline": "SDXL",
    "diffusers:FluxPipeline": "FLUX",
}


def get_user_agent():
    return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'


def to_list(s):
    return [x.strip() for x in s.split(",") if not s == ""]


def list_uniq(l):
        return sorted(set(l), key=l.index)


def list_sub(a, b):
    return [e for e in a if e not in b]


def is_repo_name(s):
    import re
    return re.fullmatch(r'^[^/]+?/[^/]+?$', s)


from translatepy import Translator
translator = Translator()
def translate_to_en(input: str):
    try:
        output = str(translator.translate(input, 'English'))
    except Exception as e:
        output = input
        print(e)
    return output


def get_local_model_list(dir_path):
    model_list = []
    valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin')
    for file in Path(dir_path).glob("*"):
        if file.suffix in valid_extensions:
            file_path = str(Path(f"{dir_path}/{file.name}"))
            model_list.append(file_path)
    return model_list


def download_things(directory, url, hf_token="", civitai_api_key=""):
    url = url.strip()
    if "drive.google.com" in url:
        original_dir = os.getcwd()
        os.chdir(directory)
        os.system(f"gdown --fuzzy {url}")
        os.chdir(original_dir)
    elif "huggingface.co" in url:
        url = url.replace("?download=true", "")
        # url = urllib.parse.quote(url, safe=':/')  # fix encoding
        if "/blob/" in url:
            url = url.replace("/blob/", "/resolve/")
        user_header = f'"Authorization: Bearer {hf_token}"'
        if hf_token:
            os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
        else:
            os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory}  -o {url.split('/')[-1]}")
    elif "civitai.com" in url:
        if "?" in url:
            url = url.split("?")[0]
        if civitai_api_key:
            url = url + f"?token={civitai_api_key}"
            os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
        else:
            print("\033[91mYou need an API key to download Civitai models.\033[0m")
    else:
        os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")


def escape_lora_basename(basename: str):
    return basename.replace(".", "_").replace(" ", "_").replace(",", "")


def to_lora_key(path: str):
    return escape_lora_basename(Path(path).stem)


def to_lora_path(key: str):
    if Path(key).is_file(): return key
    path = Path(f"{directory_loras}/{escape_lora_basename(key)}.safetensors")
    return str(path)


def safe_float(input):
    output = 1.0
    try:
        output = float(input)
    except Exception:
        output = 1.0
    return output


def save_images(images: list[Image.Image], metadatas: list[str]):
    from PIL import PngImagePlugin
    import uuid
    try:
        output_images = []
        for image, metadata in zip(images, metadatas):
            info = PngImagePlugin.PngInfo()
            info.add_text("parameters", metadata)
            savefile = f"{str(uuid.uuid4())}.png"
            image.save(savefile, "PNG", pnginfo=info)
            output_images.append(str(Path(savefile).resolve()))
        return output_images
    except Exception as e:
        print(f"Failed to save image file: {e}")
        raise Exception(f"Failed to save image file:") from e


def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
    from datetime import datetime, timezone, timedelta
    progress(0, desc="Updating gallery...")
    dt_now = datetime.now(timezone(timedelta(hours=9)))
    basename = dt_now.strftime('%Y%m%d_%H%M%S_')
    i = 1
    if not images: return images, gr.update(visible=False)
    output_images = []
    output_paths = []
    for image in images:
        filename = basename + str(i) + ".png"
        i += 1
        oldpath = Path(image[0])
        newpath = oldpath
        try:
            if oldpath.exists():
                newpath = oldpath.resolve().rename(Path(filename).resolve())
        except Exception as e:
           print(e)
        finally: 
            output_paths.append(str(newpath))
            output_images.append((str(newpath), str(filename)))
    progress(1, desc="Gallery updated.")
    return gr.update(value=output_images), gr.update(value=output_paths, visible=True)


def download_private_repo(repo_id, dir_path, is_replace):
    from huggingface_hub import snapshot_download
    if not hf_read_token: return
    try:
        snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
    except Exception as e:
        print(f"Error: Failed to download {repo_id}.")
        print(e)
        return
    if is_replace:
        for file in Path(dir_path).glob("*"):
            if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
                newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}')
                file.resolve().rename(newpath.resolve())


private_model_path_repo_dict = {} # {"local filepath": "huggingface repo_id", ...}


def get_private_model_list(repo_id, dir_path):
    global private_model_path_repo_dict
    api = HfApi()
    if not hf_read_token: return []
    try:
        files = api.list_repo_files(repo_id, token=hf_read_token)
    except Exception as e:
        print(f"Error: Failed to list {repo_id}.")
        print(e)
        return []
    model_list = []
    for file in files:
        path = Path(f"{dir_path}/{file}")
        if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
            model_list.append(str(path))
    for model in model_list:
        private_model_path_repo_dict[model] = repo_id
    return model_list


def download_private_file(repo_id, path, is_replace):
    from huggingface_hub import hf_hub_download
    file = Path(path)
    newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
    if not hf_read_token or newpath.exists(): return
    filename = file.name
    dirname = file.parent.name
    try:
        hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, use_auth_token=hf_read_token)
    except Exception as e:
        print(f"Error: Failed to download {filename}.")
        print(e)
        return
    if is_replace:
        file.resolve().rename(newpath.resolve())


def download_private_file_from_somewhere(path, is_replace):
    if not path in private_model_path_repo_dict.keys(): return
    repo_id = private_model_path_repo_dict.get(path, None)
    download_private_file(repo_id, path, is_replace)


model_id_list = []
def get_model_id_list():
    global model_id_list
    if len(model_id_list) != 0: return model_id_list
    api = HfApi()
    model_ids = []
    try:
        models_likes = []
        for author in HF_MODEL_USER_LIKES:
            models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes"))
        models_ex = []
        for author in HF_MODEL_USER_EX:
            models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified")
    except Exception as e:
        print(f"Error: Failed to list {author}'s models.")
        print(e)
        return model_ids
    for model in models_likes:
        model_ids.append(model.id) if not model.private else ""
    anime_models = []
    real_models = []
    anime_models_flux = []
    real_models_flux = []
    for model in models_ex:
        if not model.private and not model.gated:
            if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id)
            else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
    model_ids.extend(anime_models)
    model_ids.extend(real_models)
    model_ids.extend(anime_models_flux)
    model_ids.extend(real_models_flux)
    model_id_list = model_ids.copy()
    return model_ids


model_id_list = get_model_id_list()


def get_t2i_model_info(repo_id: str):
    api = HfApi(token=HF_TOKEN)
    try:
        if not is_repo_name(repo_id): return ""
        model = api.model_info(repo_id=repo_id, timeout=5.0)
    except Exception as e:
        print(f"Error: Failed to get {repo_id}'s info.")
        print(e)
        return ""
    if model.private or model.gated: return ""
    tags = model.tags
    info = []
    url = f"https://huggingface.co/{repo_id}/"
    if not 'diffusers' in tags: return ""
    for k, v in MODEL_TYPE_DICT.items():
        if k in tags: info.append(v)
    if model.card_data and model.card_data.tags:
        info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
    info.append(f"DLs: {model.downloads}")
    info.append(f"likes: {model.likes}")
    info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
    md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
    return gr.update(value=md)


def get_tupled_model_list(model_list):
    if not model_list: return []
    tupled_list = []
    for repo_id in model_list:
        api = HfApi()
        try:
            if not api.repo_exists(repo_id): continue
            model = api.model_info(repo_id=repo_id)
        except Exception as e:
            print(e)
            continue
        if model.private or model.gated: continue
        tags = model.tags
        info = []
        if not 'diffusers' in tags: continue
        for k, v in MODEL_TYPE_DICT.items():
            if k in tags: info.append(v)
        if model.card_data and model.card_data.tags:
            info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
        if "pony" in info:
            info.remove("pony")
            name = f"{repo_id} (Pony🐴, {', '.join(info)})"
        else:
            name = f"{repo_id} ({', '.join(info)})"
        tupled_list.append((name, repo_id))
    return tupled_list


private_lora_dict = {}
try:
    with open('lora_dict.json', encoding='utf-8') as f:
        d = json.load(f)
        for k, v in d.items():
            private_lora_dict[escape_lora_basename(k)] = v
except Exception as e:
    print(e)
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
civitai_not_exists_list = []
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
civitai_lora_last_results = {}  # {"URL to download": {search results}, ...}
all_lora_list = []


private_lora_model_list = []
def get_private_lora_model_lists():
    global private_lora_model_list
    if len(private_lora_model_list) != 0: return private_lora_model_list
    models1 = []
    models2 = []
    for repo in HF_LORA_PRIVATE_REPOS1:
        models1.extend(get_private_model_list(repo, directory_loras))
    for repo in HF_LORA_PRIVATE_REPOS2:
        models2.extend(get_private_model_list(repo, directory_loras))
    models = list_uniq(models1 + sorted(models2))
    private_lora_model_list = models.copy()
    return models


private_lora_model_list = get_private_lora_model_lists()


def get_civitai_info(path):
    global civitai_not_exists_list
    import requests
    from urllib3.util import Retry
    from requests.adapters import HTTPAdapter
    if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
    if not Path(path).exists(): return None
    user_agent = get_user_agent()
    headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
    base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
    params = {}
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))
    import hashlib
    with open(path, 'rb') as file:
        file_data = file.read()
    hash_sha256 = hashlib.sha256(file_data).hexdigest()
    url = base_url + hash_sha256
    try:
        r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
    except Exception as e:
        print(e)
        return ["", "", "", "", ""]
    if not r.ok: return None
    json = r.json()
    if not 'baseModel' in json:
        civitai_not_exists_list.append(path)
        return ["", "", "", "", ""]
    items = []
    items.append(" / ".join(json['trainedWords']))
    items.append(json['baseModel'])
    items.append(json['model']['name'])
    items.append(f"https://civitai.com/models/{json['modelId']}")
    items.append(json['images'][0]['url'])
    return items


def get_lora_model_list():
    loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras) + DIFFUSERS_FORMAT_LORAS)
    loras.insert(0, "None")
    loras.insert(0, "")
    return loras


def get_all_lora_list():
    global all_lora_list
    loras = get_lora_model_list()
    all_lora_list = loras.copy()
    return loras


def get_all_lora_tupled_list():
    global loras_dict
    models = get_all_lora_list()
    if not models: return []
    tupled_list = []
    for model in models:
        #if not model: continue # to avoid GUI-related bug
        basename = Path(model).stem
        key = to_lora_key(model)
        items = None
        if key in loras_dict.keys():
            items = loras_dict.get(key, None)
        else:
            items = get_civitai_info(model)
            if items != None:
                loras_dict[key] = items
        name = basename
        value = model
        if items and items[2] != "":
            if items[1] == "Pony":
                name = f"{basename} (for {items[1]}🐴, {items[2]})"
            else:
                name = f"{basename} (for {items[1]}, {items[2]})"
        tupled_list.append((name, value))
    return tupled_list


def update_lora_dict(path):
    global loras_dict
    key = escape_lora_basename(Path(path).stem)
    if key in loras_dict.keys(): return
    items = get_civitai_info(path)
    if items == None: return
    loras_dict[key] = items


def download_lora(dl_urls: str):
    global loras_url_to_path_dict
    dl_path = ""
    before = get_local_model_list(directory_loras)
    urls = []
    for url in [url.strip() for url in dl_urls.split(',')]:
        local_path = f"{directory_loras}/{url.split('/')[-1]}"
        if not Path(local_path).exists():
            download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
            urls.append(url)
    after = get_local_model_list(directory_loras)
    new_files = list_sub(after, before)
    i = 0
    for file in new_files:
        path = Path(file)
        if path.exists():
            new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
            path.resolve().rename(new_path.resolve())
            loras_url_to_path_dict[urls[i]] = str(new_path)
            update_lora_dict(str(new_path))
            dl_path = str(new_path)
        i += 1
    return dl_path


def copy_lora(path: str, new_path: str):
    import shutil
    if path == new_path: return new_path
    cpath = Path(path)
    npath = Path(new_path)
    if cpath.exists():
        try:
            shutil.copy(str(cpath.resolve()), str(npath.resolve()))
        except Exception as e:
            print(e)
            return None
        update_lora_dict(str(npath))
        return new_path
    else:
        return None


def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
    path = download_lora(dl_urls)
    if path:
        if not lora1 or lora1 == "None":
            lora1 = path
        elif not lora2 or lora2 == "None":
            lora2 = path
        elif not lora3 or lora3 == "None":
            lora3 = path
        elif not lora4 or lora4 == "None":
            lora4 = path
        elif not lora5 or lora5 == "None":
            lora5 = path
    choices = get_all_lora_tupled_list()
    return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
        gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)


def get_valid_lora_name(query: str, model_name: str):
    path = "None"
    if not query or query == "None": return "None"
    if to_lora_key(query) in loras_dict.keys(): return query
    if query in loras_url_to_path_dict.keys():
        path = loras_url_to_path_dict[query]
    else:
        path = to_lora_path(query.strip().split('/')[-1])
    if Path(path).exists():
        return path
    elif "http" in query:
        dl_file = download_lora(query)
        if dl_file and Path(dl_file).exists(): return dl_file
    else:
        dl_file = find_similar_lora(query, model_name)
        if dl_file and Path(dl_file).exists(): return dl_file
    return "None"


def get_valid_lora_path(query: str):
    path = None
    if not query or query == "None": return None
    if to_lora_key(query) in loras_dict.keys(): return query
    if Path(path).exists():
        return path
    else:
        return None


def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
    import re
    wt = lora_wt
    result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
    if not result: return wt
    wt = safe_float(result[0][0])
    return wt


def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
    import re
    if not "Classic" in str(prompt_syntax):  return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
    lora1 = get_valid_lora_name(lora1, model_name)
    lora2 = get_valid_lora_name(lora2, model_name)
    lora3 = get_valid_lora_name(lora3, model_name)
    lora4 = get_valid_lora_name(lora4, model_name)
    lora5 = get_valid_lora_name(lora5, model_name)
    if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
    lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
    lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
    lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
    lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
    lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
    on1, label1, tag1, md1 = get_lora_info(lora1)
    on2, label2, tag2, md2 = get_lora_info(lora2)
    on3, label3, tag3, md3 = get_lora_info(lora3)
    on4, label4, tag4, md4 = get_lora_info(lora4)
    on5, label5, tag5, md5 = get_lora_info(lora5)
    lora_paths = [lora1, lora2, lora3, lora4, lora5]
    prompts = prompt.split(",") if prompt else []
    for p in prompts:
        p = str(p).strip()
        if "<lora" in p:
            result = re.findall(r'<lora:(.+?):(.+?)>', p)
            if not result: continue
            key = result[0][0]
            wt = result[0][1]
            path = to_lora_path(key)
            if not key in loras_dict.keys() or not path:
                path = get_valid_lora_name(path)
                if not path or path == "None": continue
            if path in lora_paths:
                continue
            elif not on1:
                lora1 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora1_wt = safe_float(wt)
                on1 = True
            elif not on2:
                lora2 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora2_wt = safe_float(wt)
                on2 = True
            elif not on3:
                lora3 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora3_wt = safe_float(wt)
                on3 = True
            elif not on4:
                lora4 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora4_wt = safe_float(wt)
                on4, label4, tag4, md4 = get_lora_info(lora4)
            elif not on5:
                lora5 = path
                lora_paths = [lora1, lora2, lora3, lora4, lora5]
                lora5_wt = safe_float(wt)
                on5 = True
    return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt


def get_lora_info(lora_path: str):
    is_valid = False
    tag = ""
    label = ""
    md = "None"
    if not lora_path or lora_path == "None":
        print("LoRA file not found.")
        return is_valid, label, tag, md
    path = Path(lora_path)
    new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
    if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()):
        print("LoRA file is not registered.")
        return tag, label, tag, md
    if not new_path.exists():
        download_private_file_from_somewhere(str(path), True)
    basename = new_path.stem
    label = f'Name: {basename}'
    items = loras_dict.get(basename, None)
    if items == None:
        items = get_civitai_info(str(new_path))
        if items != None:
            loras_dict[basename] = items
    if items and items[2] != "":
        tag = items[0]
        label = f'Name: {basename}'
        if items[1] == "Pony":
            label = f'Name: {basename} (for Pony🐴)'
        if items[4]:
            md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})'
        elif items[3]:
            md = f'[LoRA Model URL]({items[3]})'
    is_valid = True
    return is_valid, label, tag, md


def normalize_prompt_list(tags: list[str]):
    prompts = []
    for tag in tags:
        tag = str(tag).strip()
        if tag:
            prompts.append(tag)
    return prompts


def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
    if lora_info == "None": return gr.update(value=prompt)
    tags = prompt.split(",") if prompt else []
    prompts = normalize_prompt_list(tags)

    lora_tag = lora_info.replace("/",",")
    lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
    lora_prompts = normalize_prompt_list(lora_tags)
 
    empty = [""]
    prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
    return gr.update(value=prompt)


def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
    import re
    on1, label1, tag1, md1 = get_lora_info(lora1)
    on2, label2, tag2, md2 = get_lora_info(lora2)
    on3, label3, tag3, md3 = get_lora_info(lora3)
    on4, label4, tag4, md4 = get_lora_info(lora4)
    on5, label5, tag5, md5 = get_lora_info(lora5)
    lora_paths = [lora1, lora2, lora3, lora4, lora5]

    output_prompt = prompt
    if "Classic" in str(prompt_syntax):
        prompts = prompt.split(",") if prompt else []
        output_prompts = []
        for p in prompts:
            p = str(p).strip()
            if "<lora" in p:
                result = re.findall(r'<lora:(.+?):(.+?)>', p)
                if not result: continue
                key = result[0][0]
                wt = result[0][1]
                path = to_lora_path(key)
                if not key in loras_dict.keys() or not path: continue
                if path in lora_paths:
                    output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>")
            elif p:
                output_prompts.append(p)
        lora_prompts = []
        if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
        if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
        if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
        if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
        if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
        output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
    choices = get_all_lora_tupled_list()

    return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\
     gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\
     gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\
     gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\
     gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\
     gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\
     gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
     gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
     gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
     gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)


def get_my_lora(link_url):
    from pathlib import Path
    before = get_local_model_list(directory_loras)
    for url in [url.strip() for url in link_url.split(',')]:
        if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
            download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
    after = get_local_model_list(directory_loras)
    new_files = list_sub(after, before)
    for file in new_files:
        path = Path(file)
        if path.exists():
            new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
            path.resolve().rename(new_path.resolve())
            update_lora_dict(str(new_path))
    new_lora_model_list = get_lora_model_list()
    new_lora_tupled_list = get_all_lora_tupled_list()
    
    return gr.update(
        choices=new_lora_tupled_list, value=new_lora_model_list[-1]
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    )


def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Uploading...")
    file_paths = [file.name for file in files]
    progress(1, desc="Uploaded.")
    return gr.update(value=file_paths, visible=True), gr.update(visible=True)


def move_file_lora(filepaths):
    import shutil
    for file in filepaths:
        path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
        newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
        path.resolve().rename(newpath.resolve())
        update_lora_dict(str(newpath))

    new_lora_model_list = get_lora_model_list()
    new_lora_tupled_list = get_all_lora_tupled_list()
    
    return gr.update(
        choices=new_lora_tupled_list, value=new_lora_model_list[-1]
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    ), gr.update(
        choices=new_lora_tupled_list
    )


def get_civitai_info(path):
    global civitai_not_exists_list, loras_url_to_path_dict
    import requests
    from requests.adapters import HTTPAdapter
    from urllib3.util import Retry
    default = ["", "", "", "", ""]
    if path in set(civitai_not_exists_list): return default
    if not Path(path).exists(): return None
    user_agent = get_user_agent()
    headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
    base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
    params = {}
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))
    import hashlib
    with open(path, 'rb') as file:
        file_data = file.read()
    hash_sha256 = hashlib.sha256(file_data).hexdigest()
    url = base_url + hash_sha256
    try:
        r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
    except Exception as e:
        print(e)
        return default
    else:
        if not r.ok: return None
        json = r.json()
        if 'baseModel' not in json:
            civitai_not_exists_list.append(path)
            return default
        items = []
        items.append(" / ".join(json['trainedWords']))                  # The words (prompts) used to trigger the model
        items.append(json['baseModel'])                                 # Base model (SDXL1.0, Pony, ...)
        items.append(json['model']['name'])                             # The name of the model version
        items.append(f"https://civitai.com/models/{json['modelId']}")   # The repo url for the model
        items.append(json['images'][0]['url'])                          # The url for a sample image
        loras_url_to_path_dict[path] = json['downloadUrl']              # The download url to get the model file for this specific version
        return items


def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
                           sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""):
    import requests
    from requests.adapters import HTTPAdapter
    from urllib3.util import Retry
    user_agent = get_user_agent()
    headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
    base_url = 'https://civitai.com/api/v1/models'
    params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'}
    if query: params["query"] = query
    if tag: params["tag"] = tag
    session = requests.Session()
    retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
    session.mount("https://", HTTPAdapter(max_retries=retries))
    try:
        r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30))
    except Exception as e:
        print(e)
        return None
    else:
        if not r.ok: return None
        json = r.json()
        if 'items' not in json: return None
        items = []
        for j in json['items']:
            for model in j['modelVersions']:
                item = {}
                if model['baseModel'] not in set(allow_model): continue
                item['name'] = j['name']
                item['creator'] = j['creator']['username']
                item['tags'] = j['tags']
                item['model_name'] = model['name']
                item['base_model'] = model['baseModel']
                item['dl_url'] = model['downloadUrl']
                item['md'] = f'<img src="{model["images"][0]["url"]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL](https://civitai.com/models/{j["id"]})'
                items.append(item)
        return items


def search_civitai_lora(query, base_model, sort="Highest Rated", period="AllTime", tag=""):
    global civitai_lora_last_results
    items = search_lora_on_civitai(query, base_model, 100, sort, period, tag)
    if not items: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
    civitai_lora_last_results = {}
    choices = []
    for item in items:
        base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
        name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
        value = item['dl_url']
        choices.append((name, value))
        civitai_lora_last_results[value] = item
    if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
          gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
    result = civitai_lora_last_results.get(choices[0][1], "None")
    md = result['md'] if result else ""
    return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
          gr.update(visible=True), gr.update(visible=True)


def select_civitai_lora(search_result):
    if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
    result = civitai_lora_last_results.get(search_result, "None")
    md = result['md'] if result else ""
    return gr.update(value=search_result), gr.update(value=md, visible=True)


LORA_BASE_MODEL_DICT = {
    "diffusers:StableDiffusionPipeline": ["SD 1.5"],
    "diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
    "diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"],
}


def get_lora_base_model(model_name: str):
    api = HfApi(token=HF_TOKEN)
    default = ["Pony", "SDXL 1.0"]
    try:
        model = api.model_info(repo_id=model_name, timeout=5.0)
        tags = model.tags
        for tag in tags:
            if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default)
    except Exception:
        return default
    return default


def find_similar_lora(q: str, model_name: str):
    from rapidfuzz.process import extractOne
    from rapidfuzz.utils import default_process
    query = to_lora_key(q)
    print(f"Finding <lora:{query}:...>...")
    keys = list(private_lora_dict.keys())
    values = [x[2] for x in list(private_lora_dict.values())]
    s = default_process(query)
    e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0)
    key = ""
    if e1:
        e = e1[0]
        if e in set(keys): key = e
        elif e in set(values): key = keys[values.index(e)]
    if key:
        path = to_lora_path(key)
        new_path = to_lora_path(query)
        if not Path(path).exists():
            if not Path(new_path).exists(): download_private_file_from_somewhere(path, True)
            if Path(path).exists() and copy_lora(path, new_path): return new_path
    print(f"Finding <lora:{query}:...> on Civitai...")
    civitai_query = Path(query).stem if Path(query).is_file() else query
    civitai_query = civitai_query.replace("_", " ").replace("-", " ")
    base_model = get_lora_base_model(model_name)
    items = search_lora_on_civitai(civitai_query, base_model, 1)
    if items:
        item = items[0]
        path = download_lora(item['dl_url'])
        new_path = query if Path(query).is_file() else to_lora_path(query)
        if path and copy_lora(path, new_path): return new_path
    return None


def change_interface_mode(mode: str):
    if mode == "Fast":
        return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
        gr.update(visible=True), gr.update(value="Fast")
    elif mode == "Simple": # t2i mode
        return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\
        gr.update(visible=False), gr.update(value="Standard")
    elif mode == "LoRA": # t2i LoRA  mode
        return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\
        gr.update(visible=False), gr.update(value="Standard")
    else: # Standard
        return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
        gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
        gr.update(visible=True), gr.update(value="Standard")


quality_prompt_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "lowres",
    },
    {
        "name": "Animagine Common",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Pony Anime Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Pony Common",
        "prompt": "source_anime, score_9, score_8_up, score_7_up",
        "negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
    },
    {
        "name": "Animagine Standard v3.0",
        "prompt": "masterpiece, best quality",
        "negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
    },
    {
        "name": "Animagine Standard v3.1",
        "prompt": "masterpiece, best quality, very aesthetic, absurdres",
        "negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
    },
    {
        "name": "Animagine Light v3.1",
        "prompt": "(masterpiece), best quality, very aesthetic, perfect face",
        "negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
    },
    {
        "name": "Animagine Heavy v3.1",
        "prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
        "negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
    },
]


style_list = [
    {
        "name": "None",
        "prompt": "",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]


optimization_list = {
    "None": [28, 7., 'Euler a', False, 'None', 1.],
    "Default": [28, 7., 'Euler a', False, 'None', 1.],
    "SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
    "DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
    "DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
    "SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
    "Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
    "Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.],
    "Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
    "Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
    "Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
    "PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
    "PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
    "PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
    "PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
}


def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui):
    if not opt in list(optimization_list.keys()): opt = "None"
    def_steps_gui = 28
    def_cfg_gui = 7.
    steps = optimization_list.get(opt, "None")[0]
    cfg = optimization_list.get(opt, "None")[1]
    sampler = optimization_list.get(opt, "None")[2]
    clip_skip = optimization_list.get(opt, "None")[3]
    lora = optimization_list.get(opt, "None")[4]
    lora_scale = optimization_list.get(opt, "None")[5]
    if opt == "None":
        steps = max(steps_gui, def_steps_gui)
        cfg = max(cfg_gui, def_cfg_gui)
        clip_skip = clip_skip_gui
    elif opt == "SPO" or opt == "DPO":
        steps = max(steps_gui, def_steps_gui)
        cfg = max(cfg_gui, def_cfg_gui)

    return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\
          gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale),


# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
preset_sampler_setting = {
    "None": ["Euler a", 28, 7., True, 1024, 1024, "None"],
    "Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"],
    "Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"],
    "Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"],
    "Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"],
    "Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"],
    "Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"],
    "Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"],
    "Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"],
    "Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"],
    "Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"],
    "Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"],
    "Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"],
}


def set_sampler_settings(sampler_setting):
    if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None":
        return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\
              gr.update(value=1024), gr.update(value=1024), gr.update(value="None")
    v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024])
    # sampler, steps, cfg, clip_skip, width, height, optimization
    return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\
          gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6])


preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}


def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
    def to_list(s):
        return [x.strip() for x in s.split(",") if not s == ""]
    
    def list_sub(a, b):
        return [e for e in a if e not in b]
    
    def list_uniq(l):
        return sorted(set(l), key=l.index)

    animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
    animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
    pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
    pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
    prompts = to_list(prompt)
    neg_prompts = to_list(neg_prompt)

    all_styles_ps = []
    all_styles_nps = []
    for d in style_list:
        all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
        all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    all_quality_ps = []
    all_quality_nps = []
    for d in quality_prompt_list:
        all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
        all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))

    quality_ps = to_list(preset_quality[quality_key][0])
    quality_nps = to_list(preset_quality[quality_key][1])
    styles_ps = to_list(preset_styles[styles_key][0])
    styles_nps = to_list(preset_styles[styles_key][1])

    prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
    neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)

    last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
    last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []

    if type == "Animagine":
        prompts = prompts + animagine_ps
        neg_prompts = neg_prompts + animagine_nps
    elif type == "Pony":
        prompts = prompts + pony_ps
        neg_prompts = neg_prompts + pony_nps

    prompts = prompts + styles_ps + quality_ps
    neg_prompts = neg_prompts + styles_nps + quality_nps

    prompt = ", ".join(list_uniq(prompts) + last_empty_p)
    neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)

    return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type) 


def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"):
    quality = "None"
    style = "None"
    sampler = "None"
    opt = "None"

    if genre == "Anime":
        if type != "None" and type != "Auto": style = "Anime"
        if aspect == "1:1":
            if speed == "Heavy":
                sampler = "Anime 1:1 Heavy"
            elif speed == "Fast":
                sampler = "Anime 1:1 Fast"
            else:
                sampler = "Anime 1:1 Standard"
        elif aspect == "3:4":
            if speed == "Heavy":
                sampler = "Anime 3:4 Heavy"
            elif speed == "Fast":
                sampler = "Anime 3:4 Fast"
            else:
                sampler = "Anime 3:4 Standard"
        if type == "Pony":
            quality = "Pony Anime Common"
        elif type == "Animagine":
            quality = "Animagine Common"
        else:
            quality = "None"
    elif genre == "Photo":
        if type != "None" and type != "Auto": style = "Photographic"
        if aspect == "1:1":
            if speed == "Heavy":
                sampler = "Photo 1:1 Heavy"
            elif speed == "Fast":
                sampler = "Photo 1:1 Fast"
            else:
                sampler = "Photo 1:1 Standard"
        elif aspect == "3:4":
            if speed == "Heavy":
                sampler = "Photo 3:4 Heavy"
            elif speed == "Fast":
                sampler = "Photo 3:4 Fast"
            else:
                sampler = "Photo 3:4 Standard"
        if type == "Pony":
            quality = "Pony Common"
        else:
            quality = "None"

    if speed == "Fast":
        opt = "DPO Turbo"
        if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1"

    return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type)


textual_inversion_dict = {}
try:
    with open('textual_inversion_dict.json', encoding='utf-8') as f:
        textual_inversion_dict = json.load(f)
except Exception:
    pass
textual_inversion_file_token_list = []


def get_tupled_embed_list(embed_list):
    global textual_inversion_file_list
    tupled_list = []
    for file in embed_list:
        token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0]
        tupled_list.append((token, file))
        textual_inversion_file_token_list.append(token)
    return tupled_list


def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui):
    ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list
    tags = prompt_gui.split(",") if prompt_gui else []
    prompts = []
    for tag in tags:
        tag = str(tag).strip()
        if tag and not tag in ti_tags:
            prompts.append(tag)
    ntags = neg_prompt_gui.split(",") if neg_prompt_gui else []
    neg_prompts = []
    for tag in ntags:
        tag = str(tag).strip()
        if tag and not tag in ti_tags:
            neg_prompts.append(tag)
    ti_prompts = []
    ti_neg_prompts = []
    for ti in textual_inversion_gui:
        tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False])
        is_positive = tokens[1] == True or "positive" in Path(ti).parent.name
        if is_positive: # positive prompt
            ti_prompts.append(tokens[0])
        else: # negative prompt (default)
            ti_neg_prompts.append(tokens[0])
    empty = [""]
    prompt = ", ".join(prompts + ti_prompts + empty)
    neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty)
    return gr.update(value=prompt), gr.update(value=neg_prompt),


def get_model_pipeline(repo_id: str):
    from huggingface_hub import HfApi
    api = HfApi(token=HF_TOKEN)
    default = "StableDiffusionPipeline"
    try:
        if not is_repo_name(repo_id): return default
        model = api.model_info(repo_id=repo_id, timeout=5.0)
    except Exception:
        return default
    if model.private or model.gated: return default
    tags = model.tags
    if not 'diffusers' in tags: return default
    if 'diffusers:FluxPipeline' in tags:
        return "FluxPipeline"
    if 'diffusers:StableDiffusionXLPipeline' in tags:
        return "StableDiffusionXLPipeline"
    elif 'diffusers:StableDiffusionPipeline' in tags:
        return "StableDiffusionPipeline"
    else:
        return default