John6666's picture
Upload 3 files
c533c6b verified
raw
history blame
11.9 kB
import gradio as gr
import torch
import spaces
from pathlib import Path
import gc
import subprocess
from PIL import Image
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
subprocess.run('pip cache purge', shell=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.set_grad_enabled(False)
models = [
"camenduru/FLUX.1-dev-diffusers",
"black-forest-labs/FLUX.1-schnell",
"sayakpaul/FLUX.1-merged",
"John6666/hyper-flux1-dev-fp8-flux",
"John6666/flux1-dev-minus-v1-fp8-flux",
"John6666/blue-pencil-flux1-v001-fp8-flux",
"John6666/copycat-flux-test-fp8-v11-fp8-flux",
"John6666/nepotism-fuxdevschnell-v3aio-fp8-flux",
"John6666/niji-style-flux-devfp8-fp8-flux",
"John6666/niji56-style-v3-fp8-flux",
"John6666/lyh-dalle-anime-v12dalle-fp8-flux",
"John6666/xe-hentai-flux-01-fp8-flux",
"John6666/fluxunchained-artfulnsfw-fut516xfp8e4m3fnv11-fp8-flux",
"John6666/fastflux-unchained-t5f16-fp8-flux",
"John6666/iniverse-mix-xl-sfwnsfw-fluxdfp8v10-fp8-flux",
"John6666/the-araminta-flux1a1-fp8-flux",
"John6666/acorn-is-spinning-flux-v11-fp8-flux",
"John6666/real-horny-v2-v2unet-fp8-flux",
"John6666/centerfold-flux-v20fp8e5m2-fp8-flux",
"John6666/jib-mix-flux-v208stephyper-fp8-flux",
"John6666/fluxescore-dev-v10fp16-fp8-flux",
# "",
]
num_loras = 3
num_cns = 2
control_images = [None] * num_cns
control_modes = [-1] * num_cns
control_scales = [0] * num_cns
def is_repo_name(s):
import re
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
def is_repo_exists(repo_id):
from huggingface_hub import HfApi
api = HfApi()
try:
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Error: Failed to connect {repo_id}. ")
print(e)
return True # for safe
def clear_cache():
torch.cuda.empty_cache()
gc.collect()
def deselect_lora():
selected_index = None
new_placeholder = "Type a prompt"
updated_text = ""
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
selected_index,
width,
height,
)
def get_repo_safetensors(repo_id: str):
from huggingface_hub import HfApi
api = HfApi()
try:
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
files = api.list_repo_files(repo_id=repo_id)
except Exception as e:
print(f"Error: Failed to get {repo_id}'s info.")
print(e)
return gr.update(choices=[])
files = [f for f in files if f.endswith(".safetensors")]
if len(files) == 0: return gr.update(value="", choices=[])
else: return gr.update(value=files[0], choices=files)
def expand2square(pil_img: Image.Image, background_color: tuple=(0, 0, 0)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
# https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny/blob/main/app.py
def resize_image(image, target_width, target_height, crop=True):
from image_datasets.canny_dataset import c_crop
if crop:
image = c_crop(image) # Crop the image to square
original_width, original_height = image.size
# Resize to match the target size without stretching
scale = max(target_width / original_width, target_height / original_height)
resized_width = int(scale * original_width)
resized_height = int(scale * original_height)
image = image.resize((resized_width, resized_height), Image.LANCZOS)
# Center crop to match the target dimensions
left = (resized_width - target_width) // 2
top = (resized_height - target_height) // 2
image = image.crop((left, top, left + target_width, top + target_height))
else:
image = image.resize((target_width, target_height), Image.LANCZOS)
return image
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union/blob/main/app.py
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
controlnet_union_modes = {
"None": -1,
#"scribble_hed": 0,
"canny": 0, # supported
"mlsd": 0, #supported
"tile": 1, #supported
"depth_midas": 2, # supported
"blur": 3, # supported
"openpose": 4, # supported
"gray": 5, # supported
"low_quality": 6, # supported
}
# https://github.com/pytorch/pytorch/issues/123834
def get_control_params():
from diffusers.utils import load_image
modes = []
images = []
scales = []
for i, mode in enumerate(control_modes):
if mode == -1 or control_images[i] is None: continue
modes.append(control_modes[i])
images.append(load_image(control_images[i]))
scales.append(control_scales[i])
return modes, images, scales
from preprocessor import Preprocessor
def preprocess_image(image: Image.Image, control_mode: str, height: int, width: int,
preprocess_resolution: int):
if control_mode == "None": return image
image_resolution = max(width, height)
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
# generated control_
print("start to generate control image")
preprocessor = Preprocessor()
if control_mode == "depth_midas":
preprocessor.load("Midas")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "openpose":
preprocessor.load("Openpose")
control_image = preprocessor(
image=image_before,
hand_and_face=True,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "canny":
preprocessor.load("Canny")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "mlsd":
preprocessor.load("MLSD")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "scribble_hed":
preprocessor.load("HED")
control_image = preprocessor(
image=image_before,
image_resolution=image_resolution,
detect_resolution=preprocess_resolution,
)
if control_mode == "low_quality" or control_mode == "gray" or control_mode == "blur" or control_mode == "tile":
control_image = image_before
image_width = 768
image_height = 768
else:
# make sure control image size is same as resized_image
image_width, image_height = control_image.size
image_after = resize_image(control_image, width, height, False)
ref_width, ref_height = image.size
print(f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}")
return image_after
def get_control_union_mode():
return list(controlnet_union_modes.keys())
def set_control_union_mode(i: int, mode: str, scale: str):
global control_modes
global control_scales
control_modes[i] = controlnet_union_modes.get(mode, 0)
control_scales[i] = scale
if mode != "None": return True
else: return gr.update(visible=True)
def set_control_union_image(i: int, mode: str, image: Image.Image | None, height: int, width: int, preprocess_resolution: int):
global control_images
if image is None: return None
control_images[i] = preprocess_image(image, mode, height, width, preprocess_resolution)
return control_images[i]
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
lorajson[i]["name"] = str(name) if name != "None" else ""
lorajson[i]["scale"] = float(scale)
lorajson[i]["filename"] = str(filename)
lorajson[i]["trigger"] = str(trigger)
return lorajson
def is_valid_lora(lorajson: list[dict]):
valid = False
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True
return valid
def get_trigger_word(lorajson: list[dict]):
trigger = ""
for d in lorajson:
if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]:
trigger += ", " + d["trigger"]
return trigger
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora
# https://github.com/huggingface/diffusers/issues/4919
def fuse_loras(pipe, lorajson: list[dict]):
if not lorajson or not isinstance(lorajson, list): return
a_list = []
w_list = []
for d in lorajson:
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue
k = d["name"]
if is_repo_name(k) and is_repo_exists(k):
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name)
elif not Path(k).exists():
print(f"LoRA not found: {k}")
continue
else:
w_name = Path(k).name
a_name = Path(k).stem
pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name)
a_list.append(a_name)
w_list.append(d["scale"])
if not a_list: return
pipe.set_adapters(a_list, adapter_weights=w_list)
pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
#pipe.unload_lora_weights()
def description_ui():
gr.Markdown(
"""
- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer),
[jiuface/FLUX.1-dev-Controlnet-Union](https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union),
[DamarJati/FLUX.1-DEV-Canny](https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny),
[gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator).
"""
)
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
def load_prompt_enhancer():
try:
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device)
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device)
except Exception as e:
print(e)
enhancer_flux = None
return enhancer_flux
enhancer_flux = load_prompt_enhancer()
@spaces.GPU(duration=30)
def enhance_prompt(input_prompt):
result = enhancer_flux("enhance prompt: " + input_prompt, max_length = 256)
enhanced_text = result[0]['generated_text']
return enhanced_text
load_prompt_enhancer.zerogpu = True
fuse_loras.zerogpu = True
preprocess_image.zerogpu = True
get_control_params.zerogpu = True