Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
app.py
CHANGED
@@ -5,8 +5,9 @@ import torch
|
|
5 |
from PIL import Image
|
6 |
import spaces
|
7 |
from diffusers import DiffusionPipeline
|
8 |
-
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
9 |
-
from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
|
|
|
10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
11 |
import copy
|
12 |
import random
|
@@ -14,7 +15,7 @@ import time
|
|
14 |
|
15 |
from mod import (models, clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists,
|
16 |
description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras,
|
17 |
-
get_trigger_word, enhance_prompt, num_cns, set_control_union_image,
|
18 |
get_control_union_mode, set_control_union_mode, get_control_params)
|
19 |
from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
|
20 |
download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
|
@@ -26,6 +27,8 @@ from tagger.fl2flux import predict_tags_fl2_flux
|
|
26 |
base_model = models[0]
|
27 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
28 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
|
|
|
29 |
last_model = models[0]
|
30 |
last_cn_on = False
|
31 |
|
@@ -33,6 +36,8 @@ last_cn_on = False
|
|
33 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
34 |
def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm=True)):
|
35 |
global pipe
|
|
|
|
|
36 |
global last_model
|
37 |
global last_cn_on
|
38 |
try:
|
@@ -115,31 +120,35 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
115 |
with calculateDuration("Generating image"):
|
116 |
# Generate image
|
117 |
modes, images, scales = get_control_params()
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
return image
|
144 |
|
145 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
@@ -320,6 +329,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
320 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
321 |
custom_lora_info = gr.HTML(visible=False)
|
322 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
|
|
323 |
with gr.Column(scale=4):
|
324 |
result = gr.Image(label="Generated Image", format="png", show_share_button=False)
|
325 |
|
@@ -422,6 +432,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
422 |
outputs=[result, seed]
|
423 |
)
|
424 |
|
|
|
425 |
gr.on(
|
426 |
triggers=[model_name.change, cn_on.change],
|
427 |
fn=change_base_model,
|
@@ -443,6 +454,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
443 |
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
444 |
|
445 |
for i, l in enumerate(lora_repo):
|
|
|
446 |
gr.on(
|
447 |
triggers=[lora_download[i].click],
|
448 |
fn=download_my_lora,
|
@@ -463,7 +475,7 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as app:
|
|
463 |
).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
|
464 |
).success(apply_lora_prompt, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
|
465 |
).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
|
466 |
-
|
467 |
for i, m in enumerate(cn_mode):
|
468 |
gr.on(
|
469 |
triggers=[cn_mode[i].change, cn_scale[i].change],
|
|
|
5 |
from PIL import Image
|
6 |
import spaces
|
7 |
from diffusers import DiffusionPipeline
|
8 |
+
#from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
9 |
+
#from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
|
10 |
+
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
|
11 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
12 |
import copy
|
13 |
import random
|
|
|
15 |
|
16 |
from mod import (models, clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists,
|
17 |
description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras,
|
18 |
+
get_trigger_word, enhance_prompt, deselect_lora, num_cns, set_control_union_image,
|
19 |
get_control_union_mode, set_control_union_mode, get_control_params)
|
20 |
from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
|
21 |
download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
|
|
|
27 |
base_model = models[0]
|
28 |
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
|
29 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
30 |
+
controlnet_union = None
|
31 |
+
controlnet = None
|
32 |
last_model = models[0]
|
33 |
last_cn_on = False
|
34 |
|
|
|
36 |
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
|
37 |
def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm=True)):
|
38 |
global pipe
|
39 |
+
global controlnet_union
|
40 |
+
global controlnet
|
41 |
global last_model
|
42 |
global last_cn_on
|
43 |
try:
|
|
|
120 |
with calculateDuration("Generating image"):
|
121 |
# Generate image
|
122 |
modes, images, scales = get_control_params()
|
123 |
+
try:
|
124 |
+
if not cn_on or len(modes) == 0:
|
125 |
+
progress(0, desc="Start Inference.")
|
126 |
+
image = pipe(
|
127 |
+
prompt=prompt_mash,
|
128 |
+
num_inference_steps=steps,
|
129 |
+
guidance_scale=cfg_scale,
|
130 |
+
width=width,
|
131 |
+
height=height,
|
132 |
+
generator=generator,
|
133 |
+
joint_attention_kwargs={"scale": lora_scale},
|
134 |
+
).images[0]
|
135 |
+
else:
|
136 |
+
progress(0, desc="Start Inference with ControlNet.")
|
137 |
+
image = pipe(
|
138 |
+
prompt=prompt_mash,
|
139 |
+
control_image=images,
|
140 |
+
control_mode=modes,
|
141 |
+
num_inference_steps=steps,
|
142 |
+
guidance_scale=cfg_scale,
|
143 |
+
width=width,
|
144 |
+
height=height,
|
145 |
+
controlnet_conditioning_scale=scales,
|
146 |
+
generator=generator,
|
147 |
+
joint_attention_kwargs={"scale": lora_scale},
|
148 |
+
).images[0]
|
149 |
+
except Exception as e:
|
150 |
+
print(e)
|
151 |
+
raise Exception(f"Inference Error: {e}")
|
152 |
return image
|
153 |
|
154 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
|
|
|
329 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
330 |
custom_lora_info = gr.HTML(visible=False)
|
331 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
332 |
+
deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary")
|
333 |
with gr.Column(scale=4):
|
334 |
result = gr.Image(label="Generated Image", format="png", show_share_button=False)
|
335 |
|
|
|
432 |
outputs=[result, seed]
|
433 |
)
|
434 |
|
435 |
+
deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height])
|
436 |
gr.on(
|
437 |
triggers=[model_name.change, cn_on.change],
|
438 |
fn=change_base_model,
|
|
|
454 |
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
|
455 |
|
456 |
for i, l in enumerate(lora_repo):
|
457 |
+
deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]])
|
458 |
gr.on(
|
459 |
triggers=[lora_download[i].click],
|
460 |
fn=download_my_lora,
|
|
|
475 |
).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
|
476 |
).success(apply_lora_prompt, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
|
477 |
).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
|
478 |
+
|
479 |
for i, m in enumerate(cn_mode):
|
480 |
gr.on(
|
481 |
triggers=[cn_mode[i].change, cn_scale[i].change],
|
mod.py
CHANGED
@@ -62,6 +62,21 @@ def clear_cache():
|
|
62 |
gc.collect()
|
63 |
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
def get_repo_safetensors(repo_id: str):
|
66 |
from huggingface_hub import HfApi
|
67 |
api = HfApi()
|
@@ -311,4 +326,5 @@ def enhance_prompt(input_prompt):
|
|
311 |
|
312 |
load_prompt_enhancer.zerogpu = True
|
313 |
fuse_loras.zerogpu = True
|
314 |
-
|
|
|
|
62 |
gc.collect()
|
63 |
|
64 |
|
65 |
+
def deselect_lora():
|
66 |
+
selected_index = gr.State(None)
|
67 |
+
new_placeholder = "Type a prompt"
|
68 |
+
updated_text = ""
|
69 |
+
width = 1024
|
70 |
+
height = 1024
|
71 |
+
return (
|
72 |
+
gr.update(placeholder=new_placeholder),
|
73 |
+
updated_text,
|
74 |
+
selected_index,
|
75 |
+
width,
|
76 |
+
height,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
def get_repo_safetensors(repo_id: str):
|
81 |
from huggingface_hub import HfApi
|
82 |
api = HfApi()
|
|
|
326 |
|
327 |
load_prompt_enhancer.zerogpu = True
|
328 |
fuse_loras.zerogpu = True
|
329 |
+
preprocess_image.zerogpu = True
|
330 |
+
get_control_params.zerogpu = True
|