from dotenv import find_dotenv, load_dotenv from transformers import pipeline from langchain import PromptTemplate, LLMChain, OpenAI import requests import os import streamlit as st load_dotenv(find_dotenv()) HF_API_KEY=os.getenv("HF_API_KEY") # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") text = image_to_text_model(url)[0]["generated_text"] print(text) return text # make the story of it using LLM def generate_story(scenario): template = """ You are a story teller; You can generate a short story based on a simple narrative, the story should be no more than 30 words; CONTEXT: {scenario} STORY; """ prompt = PromptTemplate(template=template, input_variables=["scenario"]) story_llm = LLMChain(llm=OpenAI(model_name="gpt-4", temperature=1), prompt=prompt, verbose=True) story = story_llm.predict(scenario=scenario).replace('"', '') print(story) return story # text to speech def text2speech(message): API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" headers = {"Authorization": f"Bearer {HF_API_KEY}"} payload = { "inputs": message } response = requests.post(API_URL, headers=headers, json=payload) with open('audio.flac', 'wb') as file: file.write(response.content) # generate_story(img2text("test1.jpeg")) # text2speech("Access tokens programmatically authenticate your identity to the Hugging Face Hub") def main(): st.set_page_config(page_title="image-to-audio-story", page_icon="😊") st.header("Image to audio story") uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg']) if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) st.text('Processing img2text...') scenario = img2text(uploaded_file.name) with st.expander("scenario"): st.write(scenario) st.text('Generating story on given scenario...') story = generate_story(scenario) with st.expander("story"): st.write(story) st.text('Processing text2speech...') text2speech(story) st.audio("audio.flac") if __name__ == '__main__': main()