Spaces:
Build error
Build error
File size: 39,193 Bytes
24d2459 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
# https://arxiv.org/pdf/2112.10752.pdf
# https://github.com/ekagra-ranjan/huggingface-blog/blob/main/stable_diffusion.md
import gzip
import argparse
import math
import os
import re
import torch
from functools import lru_cache
from collections import namedtuple
import numpy as np
from tqdm import tqdm
from torch.nn import Conv2d, Linear, Module,SiLU, UpsamplingNearest2d,ModuleList
from torch import Tensor
from torch.nn import functional as F
from torch.nn.parameter import Parameter
device = "cpu"
def apply_seq(seqs, x):
for seq in seqs:
x = seq(x)
return x
def gelu(self):
return 0.5 * self * (1 + torch.tanh(self * 0.7978845608 * (1 + 0.044715 * self * self)))
class Normalize(Module):
def __init__(self, in_channels, num_groups=32, name="normalize"):
super(Normalize, self).__init__()
self.weight = Parameter(torch.ones(in_channels))
self.bias = Parameter(torch.zeros(in_channels))
self.num_groups = num_groups
self.in_channels = in_channels
self.normSelf = None
self.name = name
def forward(self, x):
# reshape for layernorm to work as group norm
# subtract mean and divide stddev
if self.num_groups == None: # just layernorm
return F.layer_norm(x, self.weight.shape, self.weight, self.bias)
else:
x_shape = x.shape
return F.group_norm(x, self.num_groups, self.weight, self.bias).reshape(*x_shape)
class AttnBlock(Module):
def __init__(self, in_channels, name="AttnBlock"):
super(AttnBlock, self).__init__()
self.norm = Normalize(in_channels, name=name+"_norm_Normalize")
self.q = Conv2d(in_channels, in_channels, 1)
self.k = Conv2d(in_channels, in_channels, 1)
self.v = Conv2d(in_channels, in_channels, 1)
self.proj_out = Conv2d(in_channels, in_channels, 1)
self.name = name
# copied from AttnBlock in ldm repo
def forward(self, x):
h_ = self.norm(x)
q, k, v = self.q(h_), self.k(h_), self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h * w) # b,c,hw
w_ = q @ k
w_ = w_ * (c ** (-0.5))
w_ = F.softmax(w_, dim=-1)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = v @ w_
h_ = h_.reshape(b, c, h, w)
del q,k,v, w_
return x + self.proj_out(h_)
class ResnetBlock(Module):
def __init__(self, in_channels, out_channels=None, name="ResnetBlock"):
super(ResnetBlock, self).__init__()
self.norm1 = Normalize(in_channels, name=name+"_norm1_Normalize")
self.conv1 = Conv2d(in_channels, out_channels, 3, padding=1)
self.norm2 = Normalize(out_channels, name=name+"_norm2_Normalize")
self.conv2 = Conv2d(out_channels, out_channels, 3, padding=1)
self.nin_shortcut = Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else lambda x: x
self.name = name
def forward(self, x):
h = self.conv1(F.silu(self.norm1(x)))
h = self.conv2(F.silu(self.norm2(h)))
return self.nin_shortcut(x) + h
class Mid(Module):
def __init__(self, block_in, name="Mid"):
super(Mid, self).__init__()
self.block_1 = ResnetBlock(block_in, block_in, name=name+"_block_1_ResnetBlock")
self.attn_1 = AttnBlock(block_in, name=name+"_attn_1_AttnBlock")
self.block_2 = ResnetBlock(block_in, block_in, name=name+"_block_2_ResnetBlock")
self.name = name
def forward(self, x):
return self.block_2(self.attn_1(self.block_1(x)))
class Decoder(Module):
def __init__(self, name="Decoder"):
super(Decoder, self).__init__()
self.conv_in = Conv2d(4, 512, 3, padding=1)
self.mid = Mid(512, name=name+"_mid_Mid")
# invert forward
self.up = ModuleList([
ResnetBlock(128, 128, name=name + "_up_0_block_2_ResnetBlock"),
ResnetBlock(128, 128, name=name + "_up_0_block_1_ResnetBlock"),
ResnetBlock(256, 128, name=name + "_up_0_block_0_ResnetBlock"),
Conv2d(256, 256, 3, padding=1),
UpsamplingNearest2d(scale_factor=2.0),
ResnetBlock(256, 256, name=name + "_up_1_block_2_ResnetBlock"),
ResnetBlock(256, 256, name=name + "_up_1_block_1_ResnetBlock"),
ResnetBlock(512, 256, name=name + "_up_1_block_0_ResnetBlock"),
Conv2d(512, 512, 3, padding=1),
UpsamplingNearest2d(scale_factor=2.0),
ResnetBlock(512, 512, name=name + "_up_2_block_2_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_2_block_1_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_2_block_0_ResnetBlock"),
Conv2d(512, 512, 3, padding=1),
UpsamplingNearest2d(scale_factor=2.0),
ResnetBlock(512, 512, name=name + "_up_3_block_2_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_3_block_1_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_up_3_block_0_ResnetBlock"),]
)
self.norm_out = Normalize(128, name=name+"_norm_out_Normalize")
self.conv_out = Conv2d(128, 3, 3, padding=1)
self.name = name
def forward(self, x):
x = self.conv_in(x)
x = self.mid(x)
for l in self.up[::-1]:
x = l(x)
return self.conv_out(F.silu(self.norm_out(x)))
class Encoder(Module):
def __init__(self, name="Encoder"):
super(Encoder, self).__init__()
self.conv_in = Conv2d(3, 128, 3, padding=1)
self.down = ModuleList([
ResnetBlock(128, 128, name=name + "_down_block_0_0_ResnetBlock"),
ResnetBlock(128, 128, name=name + "_down_block_0_1_ResnetBlock"),
Conv2d(128, 128, 3, stride=2, padding=(0, 1, 0, 1)),
ResnetBlock(128, 256, name=name + "_down_block_1_0_ResnetBlock"),
ResnetBlock(256, 256, name=name + "_down_block_1_1_ResnetBlock"),
Conv2d(256, 256, 3, stride=2, padding=(0, 1, 0, 1)),
ResnetBlock(256, 512, name=name + "_down_block_2_0_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_down_block_2_1_ResnetBlock"),
Conv2d(512, 512, 3, stride=2, padding=(0, 1, 0, 1)),
ResnetBlock(512, 512, name=name + "_down_block_3_0_ResnetBlock"),
ResnetBlock(512, 512, name=name + "_down_block_3_1_ResnetBlock"),
])
self.mid = Mid(512, name=name+"_mid_Mid")
self.norm_out = Normalize(512, name=name+"_norm_out_Normalize")
self.conv_out = Conv2d(512, 8, 3, padding=1)
self.name = name
def forward(self, x):
x = self.conv_in(x)
for l in self.down:
x = l(x)
x = self.mid(x)
return self.conv_out(F.silu(self.norm_out(x)))
class AutoencoderKL(Module):
def __init__(self, name="AutoencoderKL"):
super(AutoencoderKL, self).__init__()
self.encoder = Encoder(name=name+"_encoder_Encoder")
self.decoder = Decoder(name=name+"_decoder_Decoder")
self.quant_conv = Conv2d(8, 8, 1)
self.post_quant_conv = Conv2d(4, 4, 1)
self.name = name
def forward(self, x):
latent = self.encoder(x)
latent = self.quant_conv(latent)
latent = latent[:, 0:4] # only the means
print("latent", latent.shape)
latent = self.post_quant_conv(latent)
return self.decoder(latent)
# not to be confused with ResnetBlock
class ResBlock(Module):
def __init__(self, channels, emb_channels, out_channels, name="ResBlock"):
super(ResBlock, self).__init__()
self.in_layers = ModuleList([
Normalize(channels, name=name +"_in_layers_Normalize"),
SiLU(),
Conv2d(channels, out_channels, 3, padding=1)
])
self.emb_layers = ModuleList([
SiLU(),
Linear(emb_channels, out_channels)
])
self.out_layers = ModuleList([
Normalize(out_channels, name=name +"_out_layers_Normalize"),
SiLU(),
Conv2d(out_channels, out_channels, 3, padding=1)
])
self.skip_connection = Conv2d(channels, out_channels, 1) if channels != out_channels else lambda x: x
self.name = name
def forward(self, x, emb):
h = apply_seq(self.in_layers, x)
emb_out = apply_seq(self.emb_layers, emb)
h = h + emb_out.reshape(*emb_out.shape, 1, 1)
h = apply_seq(self.out_layers, h)
ret = self.skip_connection(x) + h
del emb_out, h
return ret
class CrossAttention(Module):
def __init__(self, query_dim, context_dim, n_heads, d_head, name="CrossAttention"):
super(CrossAttention, self).__init__()
self.to_q = Linear(query_dim, n_heads * d_head, bias=False)
self.to_k = Linear(context_dim, n_heads * d_head, bias=False)
self.to_v = Linear(context_dim, n_heads * d_head, bias=False)
self.scale = d_head ** -0.5
self.num_heads = n_heads
self.head_size = d_head
self.to_out = ModuleList([Linear(n_heads * d_head, query_dim)])
self.name = name
def forward(self, x, context=None):
context = x if context is None else context
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
q = q.reshape(x.shape[0], -1, self.num_heads, self.head_size).permute(0, 2, 1,
3) # (bs, num_heads, time, head_size)
k = k.reshape(x.shape[0], -1, self.num_heads, self.head_size).permute(0, 2, 3,
1) # (bs, num_heads, head_size, time)
v = v.reshape(x.shape[0], -1, self.num_heads, self.head_size).permute(0, 2, 1,
3) # (bs, num_heads, time, head_size)
score = q@k * self.scale
score = F.softmax(score, dim=-1) # (bs, num_heads, time, time)
attention = (score@v).permute(0, 2, 1, 3) # (bs, time, num_heads, head_size)
h_ = attention.reshape(shape=(x.shape[0], -1, self.num_heads * self.head_size))
del q,k,v,score
return apply_seq(self.to_out, h_)
class GEGLU(Module):
def __init__(self, dim_in, dim_out, name ="GEGLU"):
super(GEGLU, self).__init__()
self.proj = Linear(dim_in, dim_out * 2)
self.dim_out = dim_out
self.name = name
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * gelu(gate)
class FeedForward(Module):
def __init__(self, dim, mult=4, name="FeedForward"):
super(FeedForward, self).__init__()
self.net = ModuleList([
GEGLU(dim, dim * mult, name=name+"_net_0_GEGLU"),
Linear(dim * mult, dim)
])
self.name = name
def forward(self, x):
return apply_seq(self.net, x)
class BasicTransformerBlock(Module):
def __init__(self, dim, context_dim, n_heads, d_head, name="BasicTransformerBlock"):
super(BasicTransformerBlock, self).__init__()
self.attn1 = CrossAttention(dim, dim, n_heads, d_head, name=name+"_attn1_CrossAttention")
self.ff = FeedForward(dim, name=name+"_ff_FeedForward")
self.attn2 = CrossAttention(dim, context_dim, n_heads, d_head, name=name+"_attn2_CrossAttention")
self.norm1 = Normalize(dim, num_groups=None, name=name+"_norm1_Normalize")
self.norm2 = Normalize(dim, num_groups=None, name=name+"_norm2_Normalize")
self.norm3 = Normalize(dim, num_groups=None, name=name+"_norm3_Normalize")
self.name = name
def forward(self, x, context=None):
x = self.attn1(self.norm1(x)) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(Module):
def __init__(self, channels, context_dim, n_heads, d_head, name="SpatialTransformer"):
super(SpatialTransformer, self).__init__()
self.norm = Normalize(channels, name=name+"_norm_Normalize")
assert channels == n_heads * d_head
self.proj_in = Conv2d(channels, n_heads * d_head, 1)
self.transformer_blocks = ModuleList([BasicTransformerBlock(channels, context_dim, n_heads, d_head, name=name+"_transformer_blocks_0_BasicTransformerBlock")])
self.proj_out = Conv2d(n_heads * d_head, channels, 1)
self.name = name
def forward(self, x, context=None):
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = self.proj_in(x)
x = x.reshape(b, c, h * w).permute(0, 2, 1)
for block in self.transformer_blocks:
x = block(x, context=context)
x = x.permute(0, 2, 1).reshape(b, c, h, w)
ret = self.proj_out(x) + x_in
del x_in, x
return ret
class Downsample(Module):
def __init__(self, channels, name = "Downsample"):
super(Downsample, self).__init__()
self.op = Conv2d(channels, channels, 3, stride=2, padding=1)
self.name = name
def forward(self, x):
return self.op(x)
class Upsample(Module):
def __init__(self, channels, name ="Upsample"):
super(Upsample, self).__init__()
self.conv = Conv2d(channels, channels, 3, padding=1)
self.name = name
def forward(self, x):
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
return self.conv(x)
def timestep_embedding(timesteps, dim, max_period=10000):
half = dim // 2
freqs = np.exp(-math.log(max_period) * np.arange(0, half, dtype=np.float32) / half)
args = timesteps.cpu().numpy() * freqs
embedding = np.concatenate([np.cos(args), np.sin(args)])
return Tensor(embedding).to(device).reshape(1, -1)
class GroupGap(Module):
def __init__(self):
super(GroupGap, self).__init__()
class UNetModel(Module):
def __init__(self,name = "UNetModel"):
super(UNetModel, self).__init__()
self.time_embed = ModuleList([
Linear(320, 1280),
SiLU(),
Linear(1280, 1280),
])
self.input_blocks = ModuleList([
Conv2d(4, 320, kernel_size=3, padding=1),
GroupGap(),
# TODO: my head sizes and counts are a guess
ResBlock(320, 1280, 320, name=name+"_input_blocks_1_ResBlock"),
SpatialTransformer(320, 768, 8, 40,name=name+"_input_blocks_1_SpatialTransformer"),
GroupGap(),
ResBlock(320, 1280, 320, name=name+"_input_blocks_2_ResBlock"),
SpatialTransformer(320, 768, 8, 40,name=name+"_input_blocks_2_SpatialTransformer"),
GroupGap(),
Downsample(320, name=name+"_input_blocks_3_Downsample"),
GroupGap(),
ResBlock(320, 1280, 640, name=name+"_input_blocks_4_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_input_blocks_4_SpatialTransformer"),
GroupGap(),
ResBlock(640, 1280, 640, name=name+"_input_blocks_5_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_input_blocks_5_SpatialTransformer"),
GroupGap(),
Downsample(640, name=name+"_input_blocks_6_Downsample"),
GroupGap(),
ResBlock(640, 1280, 1280, name=name+"_input_blocks_7_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_input_blocks_7_SpatialTransformer"),
GroupGap(),
ResBlock(1280, 1280, 1280, name=name+"_input_blocks_8_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_input_blocks_8_SpatialTransformer"),
GroupGap(),
Downsample(1280,name=name+"_input_blocks_9_Downsample"),
GroupGap(),
ResBlock(1280, 1280, 1280, name=name+"_input_blocks_10_ResBlock"),
GroupGap(),
ResBlock(1280, 1280, 1280, name=name+"_input_blocks_11_ResBlock"),
GroupGap(),
])
self.middle_block = ModuleList([
ResBlock(1280, 1280, 1280, name=name+"_middle_block_1_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_middle_block_2_SpatialTransformer"),
ResBlock(1280, 1280, 1280, name=name+"_middle_block_3_ResBlock")
])
self.output_blocks = ModuleList([
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_1_ResBlock"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_2_ResBlock"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_3_ResBlock"),
Upsample(1280, name=name+"_output_blocks_3_Upsample"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_4_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_output_blocks_4_SpatialTransformer"),
GroupGap(),
ResBlock(2560, 1280, 1280, name=name+"_output_blocks_5_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_output_blocks_5_SpatialTransformer"),
GroupGap(),
ResBlock(1920, 1280, 1280, name=name+"_output_blocks_6_ResBlock"),
SpatialTransformer(1280, 768, 8, 160, name=name+"_output_blocks_6_SpatialTransformer"),
Upsample(1280, name=name+"_output_blocks_6_Upsample"),
GroupGap(),
ResBlock(1920, 1280, 640, name=name+"_output_blocks_7_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_output_blocks_7_SpatialTransformer"), # 6
GroupGap(),
ResBlock(1280, 1280, 640, name=name+"_output_blocks_8_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_output_blocks_8_SpatialTransformer"),
GroupGap(),
ResBlock(960, 1280, 640, name=name+"_output_blocks_9_ResBlock"),
SpatialTransformer(640, 768, 8, 80, name=name+"_output_blocks_9_SpatialTransformer"),
Upsample(640, name=name+"_output_blocks_9_Upsample"),
GroupGap(),
ResBlock(960, 1280, 320, name=name+"_output_blocks_10_ResBlock"),
SpatialTransformer(320, 768, 8, 40, name=name+"_output_blocks_10_SpatialTransformer"),
GroupGap(),
ResBlock(640, 1280, 320, name=name+"_output_blocks_11_ResBlock"),
SpatialTransformer(320, 768, 8, 40, name=name+"_output_blocks_11_SpatialTransformer"),
GroupGap(),
ResBlock(640, 1280, 320, name=name+"_output_blocks_12_ResBlock"),
SpatialTransformer(320, 768, 8, 40, name=name+"_output_blocks_12_SpatialTransformer"),]
)
self.out = ModuleList([
Normalize(320, name=name+"_out_1_Normalize"),
SiLU(),
Conv2d(320, 4, kernel_size=3, padding=1)
])
self.name = name
def forward(self, x, timesteps=None, context=None):
# TODO: real time embedding
t_emb = timestep_embedding(timesteps, 320)
emb = apply_seq(self.time_embed, t_emb)
def run(x, bb):
if isinstance(bb, ResBlock):
x = bb(x, emb)
elif isinstance(bb, SpatialTransformer):
x = bb(x, context)
else:
x = bb(x)
return x
saved_inputs = []
for i, b in enumerate(self.input_blocks):
# print("input block", i)
if isinstance(b, GroupGap):
saved_inputs.append(x)
continue
x = run(x, b)
for bb in self.middle_block:
x = run(x, bb)
for i, b in enumerate(self.output_blocks):
# print("output block", i)
if isinstance(b, GroupGap):
x = torch.cat([x,saved_inputs.pop()], dim=1)
continue
x = run(x, b)
return apply_seq(self.out, x)
class CLIPMLP(Module):
def __init__(self, name ="CLIPMLP"):
super(CLIPMLP, self).__init__()
self.fc1 = Linear(768, 3072)
self.fc2 = Linear(3072, 768)
self.name = name
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = gelu(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class CLIPAttention(Module):
def __init__(self, name="CLIPAttention"):
super(CLIPAttention, self).__init__()
self.embed_dim = 768
self.num_heads = 12
self.head_dim = self.embed_dim // self.num_heads
self.scale = self.head_dim ** -0.5
self.k_proj = Linear(self.embed_dim, self.embed_dim)
self.v_proj = Linear(self.embed_dim, self.embed_dim)
self.q_proj = Linear(self.embed_dim, self.embed_dim)
self.out_proj = Linear(self.embed_dim, self.embed_dim)
self.name = name
def _shape(self, tensor, seq_len: int, bsz: int):
return tensor.reshape(bsz, seq_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
def forward(self, hidden_states, causal_attention_mask):
bsz, tgt_len, embed_dim = hidden_states.shape
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).reshape(*proj_shape)
key_states = key_states.reshape(*proj_shape)
src_len = key_states.shape[1]
value_states = value_states.reshape(*proj_shape)
attn_weights = query_states @ key_states.permute(0, 2, 1)
attn_weights = attn_weights.reshape(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.reshape(bsz * self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1)
attn_output = attn_weights @ value_states
attn_output = attn_output.reshape(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.permute(0, 2, 1, 3)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
del query_states, key_states, value_states, attn_weights
return attn_output
class CLIPEncoderLayer(Module):
def __init__(self, name="CLIPEncoderLayer"):
super(CLIPEncoderLayer, self).__init__()
self.layer_norm1 = Normalize(768, num_groups=None, name=name+"_Normalize_0")
self.self_attn = CLIPAttention(name=name+"_CLIPAttention_0")
self.layer_norm2 = Normalize(768, num_groups=None,name=name+"_Normalize_1")
self.mlp = CLIPMLP(name=name+"_CLIPMLP_0")
self.name = name
def forward(self, hidden_states, causal_attention_mask):
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(hidden_states, causal_attention_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
del residual
return hidden_states
class CLIPEncoder(Module):
def __init__(self, name="CLIPEncoder"):
super(CLIPEncoder, self).__init__()
self.layers = ModuleList([CLIPEncoderLayer(name=name+"_"+str(i)) for i in range(12)])
self.name = name
def forward(self, hidden_states, causal_attention_mask):
for i, l in enumerate(self.layers):
hidden_states = l(hidden_states, causal_attention_mask)
return hidden_states
class CLIPTextEmbeddings(Module):
def __init__(self, name="CLIPTextEmbeddings"):
super(CLIPTextEmbeddings, self ).__init__()
self.token_embedding_weight = Parameter(torch.zeros(49408, 768))
self.position_embedding_weight = Parameter(torch.zeros(77, 768))
self.name = name
def forward(self, input_ids, position_ids):
# TODO: actually support batches
inputs = torch.zeros((1, len(input_ids), 49408))
inputs = inputs.to(device)
positions = torch.zeros((1, len(position_ids), 77))
positions = positions.to(device)
for i, x in enumerate(input_ids): inputs[0][i][x] = 1
for i, x in enumerate(position_ids): positions[0][i][x] = 1
inputs_embeds = inputs @ self.token_embedding_weight
position_embeddings = positions @ \
self.position_embedding_weight
return inputs_embeds + position_embeddings
class CLIPTextTransformer(Module):
def __init__(self, name="CLIPTextTransformer"):
super(CLIPTextTransformer, self).__init__()
self.embeddings = CLIPTextEmbeddings(name=name+"_CLIPTextEmbeddings_0")
self.encoder = CLIPEncoder(name=name+"_CLIPEncoder_0")
self.final_layer_norm = Normalize(768, num_groups=None, name=name+"_CLIPTextTransformer_normalizer_0")
# 上三角都是 -inf 值
self.causal_attention_mask = Tensor(np.triu(np.ones((1, 1, 77, 77), dtype=np.float32) * -np.inf, k=1)).to(device)
self.name = name
def forward(self, input_ids):
x = self.embeddings(input_ids, list(range(len(input_ids))))
x = self.encoder(x, self.causal_attention_mask)
return self.final_layer_norm(x)
# Clip tokenizer, taken from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py (MIT license)
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)),
"./clip_tokenizer/bpe_simple_vocab_16e6.txt.gz")
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
import threading
class ClipTokenizer:
_instance_lock = threading.Lock()
def __init__(self, bpe_path: str = default_bpe()):
self.byte_encoder = bytes_to_unicode()
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152 - 256 - 2 + 1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v + '</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[^\s]+""",
re.IGNORECASE)
@classmethod
def instance(cls, *args, **kwargs):
with ClipTokenizer._instance_lock:
if not hasattr(ClipTokenizer, "_instance"):
ClipTokenizer._instance = ClipTokenizer(*args, **kwargs)
return ClipTokenizer._instance
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + (token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token + '</w>'
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except Exception:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(text.strip()).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
# Truncation, keeping two slots for start and end tokens.
if len(bpe_tokens) > 75:
bpe_tokens = bpe_tokens[:75]
return [49406] + bpe_tokens + [49407] * (77 - len(bpe_tokens) - 1)
class StableDiffusion(Module):
_instance_lock = threading.Lock()
def __init__(self, name="StableDiffusion"):
super(StableDiffusion, self).__init__()
self.betas = Parameter(torch.zeros(1000))
self.alphas_cumprod = Parameter(torch.zeros(1000))
self.alphas_cumprod_prev = Parameter(torch.zeros(1000))
self.sqrt_alphas_cumprod = Parameter(torch.zeros(1000))
self.sqrt_one_minus_alphas_cumprod = Parameter(torch.zeros(1000))
self.log_one_minus_alphas_cumprod = Parameter(torch.zeros(1000))
self.sqrt_recip_alphas_cumprod = Parameter(torch.zeros(1000))
self.sqrt_recipm1_alphas_cumprod = Parameter(torch.zeros(1000))
self.posterior_variance = Parameter(torch.zeros(1000))
self.posterior_log_variance_clipped = Parameter(torch.zeros(1000))
self.posterior_mean_coef1 = Parameter(torch.zeros(1000))
self.posterior_mean_coef2 = Parameter(torch.zeros(1000))
self.unet = UNetModel(name=name+"_unet")
self.model = namedtuple("DiffusionModel", ["diffusion_model"])(diffusion_model=self.unet)
self.first_stage_model = AutoencoderKL(name=name+"_AutoencoderKL")
self.text_decoder = CLIPTextTransformer(name=name+"_CLIPTextTransformer")
self.cond_stage_model = namedtuple("CondStageModel", ["transformer"])(
transformer=namedtuple("Transformer", ["text_model"])(text_model=self.text_decoder))
self.name = name
@classmethod
def instance(cls, *args, **kwargs):
with StableDiffusion._instance_lock:
if not hasattr(StableDiffusion, "_instance"):
StableDiffusion._instance = StableDiffusion(*args, **kwargs)
return StableDiffusion._instance
# TODO: make forward run the model
# Set Numpy and PyTorch seeds
class Args(object):
def __init__(self, phrase, steps, model_type, guidance_scale, img_width, img_height, seed, device, model_file):
self.phrase = phrase
self.steps = steps
self.model_type = model_type
self.scale = guidance_scale
self.img_width = int(img_width)
self.img_height = int(img_height)
self.seed = seed
self.device = device
self.model_file = model_file
class Text2img(Module):
_instance_lock = threading.Lock()
def __init__(self, args: Args):
super(Text2img, self).__init__()
self.is_load_model=False
self.args = args
self.model = StableDiffusion().instance()
@classmethod
def instance(cls, *args, **kwargs):
with Text2img._instance_lock:
if not hasattr(Text2img, "_instance"):
Text2img._instance = Text2img(*args, **kwargs)
return Text2img._instance
def load_model(self):
if self.args.model_file != "" and self.is_load_model==False:
net = torch.load(self.args.model_file )
self.model.load_state_dict(net)
self.model = self.model.to(device)
self.is_load_model=True
def get_token_encode(self, phrase):
tokenizer = ClipTokenizer().instance()
phrase = tokenizer.encode(phrase)
with torch.no_grad():
context = self.model.text_decoder(phrase)
return context.to(self.args.device)
def forward(self, phrase:str):
self.set_seeds(True)
self.load_model()
context = self.get_token_encode(phrase)
unconditional_context = self.get_token_encode("")
timesteps = list(np.arange(1, 1000, 1000 // self.args.steps))
print(f"running for {timesteps} timesteps")
alphas = [self.model.alphas_cumprod[t] for t in timesteps]
alphas_prev = [1.0] + alphas[:-1]
latent_width = int(self.args.img_width) // 8
latent_height = int(self.args.img_height) // 8
# start with random noise
latent = torch.randn(1, 4, latent_height, latent_width)
latent = latent.to(self.args.device)
with torch.no_grad():
# this is diffusion
for index, timestep in (t := tqdm(list(enumerate(timesteps))[::-1])):
t.set_description("%3d %3d" % (index, timestep))
e_t = self.get_model_latent_output(latent.clone(), timestep, self.model.unet, context.clone(),
unconditional_context.clone())
x_prev, pred_x0 = self.get_x_prev_and_pred_x0(latent, e_t, index, alphas, alphas_prev)
# e_t_next = get_model_output(x_prev)
# e_t_prime = (e_t + e_t_next) / 2
# x_prev, pred_x0 = get_x_prev_and_pred_x0(latent, e_t_prime, index)
latent = x_prev
return self.latent_decode(latent, latent_height, latent_width)
def get_x_prev_and_pred_x0(self, x, e_t, index, alphas, alphas_prev):
temperature = 1
a_t, a_prev = alphas[index], alphas_prev[index]
sigma_t = 0
sqrt_one_minus_at = math.sqrt(1 - a_t)
# print(a_t, a_prev, sigma_t, sqrt_one_minus_at)
pred_x0 = (x - sqrt_one_minus_at * e_t) / math.sqrt(a_t)
# direction pointing to x_t
dir_xt = math.sqrt(1. - a_prev - sigma_t ** 2) * e_t
noise = sigma_t * torch.randn(*x.shape) * temperature
x_prev = math.sqrt(a_prev) * pred_x0 + dir_xt # + noise
return x_prev, pred_x0
def get_model_latent_output(self, latent, t, unet, context, unconditional_context):
timesteps = torch.Tensor([t])
timesteps = timesteps.to(self.args.device)
unconditional_latent = unet(latent, timesteps, unconditional_context)
latent = unet(latent, timesteps, context)
unconditional_guidance_scale = self.args.scale
e_t = unconditional_latent + unconditional_guidance_scale * (latent - unconditional_latent)
del unconditional_latent, latent, timesteps, context
return e_t
def latent_decode(self, latent, latent_height, latent_width):
# upsample latent space to image with autoencoder
# x = model.first_stage_model.post_quant_conv( 8* latent)
x = self.model.first_stage_model.post_quant_conv(1 / 0.18215 * latent)
x = x.to(self.args.device)
x = self.model.first_stage_model.decoder(x)
x = x.to(self.args.device)
# make image correct size and scale
x = (x + 1.0) / 2.0
x = x.reshape(3, latent_height * 8, latent_width * 8).permute(1, 2, 0)
decode_latent = (x.detach().cpu().numpy().clip(0, 1) * 255).astype(np.uint8)
return decode_latent
def decode_latent2img(self, decode_latent):
# save image
from PIL import Image
img = Image.fromarray(decode_latent)
return img
def set_seeds(self, cuda):
np.random.seed(self.args.seed)
torch.manual_seed(self.args.seed)
if cuda:
torch.cuda.manual_seed_all(self.args.seed)
@lru_cache()
def text2img(phrase, steps, model_file, guidance_scale, img_width, img_height, seed, device):
try:
args = Args(phrase, steps, None, guidance_scale, img_width, img_height, seed, device, model_file)
im = Text2img.instance(args).forward(args.phrase)
finally:
pass
return im
# this is sd-v1-4.ckpt
FILENAME = "/tmp/stable_diffusion_v1_4.pt"
# this is sd-v1-5.ckpt
# FILENAME = "/tmp/stable_diffusion_v1_5.pt"
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run Stable Diffusion',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--steps', type=int, default=25, help="Number of steps in diffusion")
parser.add_argument('--phrase', type=str, default="anthropomorphic cat portrait art ", help="Phrase to render")
parser.add_argument('--out', type=str, default="/tmp/rendered.png", help="Output filename")
parser.add_argument('--scale', type=float, default=7.5, help="unconditional guidance scale")
parser.add_argument('--model_file', type=str, default="/tmp/mdjrny-v4.pt", help="model weight file")
parser.add_argument('--img_width', type=int, default=512, help="output image width")
parser.add_argument('--img_height', type=int, default=512, help="output image height")
parser.add_argument('--seed', type=int, default=443, help="random seed")
parser.add_argument('--device_type', type=str, default="cpu", help="random seed")
args = parser.parse_args()
device = args.device_type
im = text2img(args.phrase, args.steps, args.model_file, args.scale, args.img_width, args.img_height, args.seed, args.device_type)
print(f"saving {args.out}")
im.save(args.out) |