|
import os |
|
|
|
gpt_path = os.environ.get( |
|
"gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt" |
|
) |
|
sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth") |
|
cnhubert_base_path = os.environ.get( |
|
"cnhubert_base_path", "pretrained_models/chinese-hubert-base" |
|
) |
|
bert_path = os.environ.get( |
|
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" |
|
) |
|
infer_ttswebui = os.environ.get("infer_ttswebui", 9872) |
|
infer_ttswebui = int(infer_ttswebui) |
|
if "_CUDA_VISIBLE_DEVICES" in os.environ: |
|
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] |
|
is_half = eval(os.environ.get("is_half", "True")) |
|
import gradio as gr |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
import numpy as np |
|
import librosa,torch |
|
from feature_extractor import cnhubert |
|
cnhubert.cnhubert_base_path=cnhubert_base_path |
|
|
|
from module.models import SynthesizerTrn |
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from text import cleaned_text_to_sequence |
|
from text.cleaner import clean_text |
|
from time import time as ttime |
|
from module.mel_processing import spectrogram_torch |
|
from my_utils import load_audio |
|
|
|
device = "cuda" |
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) |
|
if is_half == True: |
|
bert_model = bert_model.half().to(device) |
|
else: |
|
bert_model = bert_model.to(device) |
|
|
|
|
|
|
|
def get_bert_feature(text, word2ph): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = bert_model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] |
|
assert len(word2ph) == len(text) |
|
phone_level_feature = [] |
|
for i in range(len(word2ph)): |
|
repeat_feature = res[i].repeat(word2ph[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|
|
|
|
n_semantic = 1024 |
|
|
|
dict_s2=torch.load(sovits_path,map_location="cpu") |
|
hps=dict_s2["config"] |
|
|
|
class DictToAttrRecursive(dict): |
|
def __init__(self, input_dict): |
|
super().__init__(input_dict) |
|
for key, value in input_dict.items(): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
self[key] = value |
|
setattr(self, key, value) |
|
|
|
def __getattr__(self, item): |
|
try: |
|
return self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
def __setattr__(self, key, value): |
|
if isinstance(value, dict): |
|
value = DictToAttrRecursive(value) |
|
super(DictToAttrRecursive, self).__setitem__(key, value) |
|
super().__setattr__(key, value) |
|
|
|
def __delattr__(self, item): |
|
try: |
|
del self[item] |
|
except KeyError: |
|
raise AttributeError(f"Attribute {item} not found") |
|
|
|
|
|
hps = DictToAttrRecursive(hps) |
|
|
|
hps.model.semantic_frame_rate = "25hz" |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
ssl_model = cnhubert.get_model() |
|
if is_half == True: |
|
ssl_model = ssl_model.half().to(device) |
|
else: |
|
ssl_model = ssl_model.to(device) |
|
|
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model |
|
) |
|
if is_half == True: |
|
vq_model = vq_model.half().to(device) |
|
else: |
|
vq_model = vq_model.to(device) |
|
vq_model.eval() |
|
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) |
|
hz = 50 |
|
max_sec = config["data"]["max_sec"] |
|
|
|
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if is_half == True: |
|
t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(device) |
|
t2s_model.eval() |
|
total = sum([param.nelement() for param in t2s_model.parameters()]) |
|
print("Number of parameter: %.2fM" % (total / 1e6)) |
|
|
|
|
|
def get_spepc(hps, filename): |
|
audio = load_audio(filename, int(hps.data.sampling_rate)) |
|
audio = torch.FloatTensor(audio) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch( |
|
audio_norm, |
|
hps.data.filter_length, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
center=False, |
|
) |
|
return spec |
|
|
|
|
|
dict_language = {"中文": "zh", "英文": "en", "日文": "ja"} |
|
|
|
|
|
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language): |
|
t0 = ttime() |
|
prompt_text = prompt_text.strip("\n") |
|
prompt_language, text = prompt_language, text.strip("\n") |
|
with torch.no_grad(): |
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) |
|
wav16k = torch.from_numpy(wav16k) |
|
if is_half == True: |
|
wav16k = wav16k.half().to(device) |
|
else: |
|
wav16k = wav16k.to(device) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ |
|
"last_hidden_state" |
|
].transpose( |
|
1, 2 |
|
) |
|
codes = vq_model.extract_latent(ssl_content) |
|
prompt_semantic = codes[0, 0] |
|
t1 = ttime() |
|
prompt_language = dict_language[prompt_language] |
|
text_language = dict_language[text_language] |
|
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) |
|
phones1 = cleaned_text_to_sequence(phones1) |
|
texts = text.split("\n") |
|
audio_opt = [] |
|
zero_wav = np.zeros( |
|
int(hps.data.sampling_rate * 0.3), |
|
dtype=np.float16 if is_half == True else np.float32, |
|
) |
|
for text in texts: |
|
phones2, word2ph2, norm_text2 = clean_text(text, text_language) |
|
phones2 = cleaned_text_to_sequence(phones2) |
|
if prompt_language == "zh": |
|
bert1 = get_bert_feature(norm_text1, word2ph1).to(device) |
|
else: |
|
bert1 = torch.zeros( |
|
(1024, len(phones1)), |
|
dtype=torch.float16 if is_half == True else torch.float32, |
|
).to(device) |
|
if text_language == "zh": |
|
bert2 = get_bert_feature(norm_text2, word2ph2).to(device) |
|
else: |
|
bert2 = torch.zeros((1024, len(phones2))).to(bert1) |
|
bert = torch.cat([bert1, bert2], 1) |
|
|
|
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) |
|
prompt = prompt_semantic.unsqueeze(0).to(device) |
|
t2 = ttime() |
|
with torch.no_grad(): |
|
|
|
pred_semantic, idx = t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_len, |
|
prompt, |
|
bert, |
|
|
|
top_k=config["inference"]["top_k"], |
|
early_stop_num=hz * max_sec, |
|
) |
|
t3 = ttime() |
|
|
|
pred_semantic = pred_semantic[:, -idx:].unsqueeze( |
|
0 |
|
) |
|
refer = get_spepc(hps, ref_wav_path) |
|
if is_half == True: |
|
refer = refer.half().to(device) |
|
else: |
|
refer = refer.to(device) |
|
|
|
audio = ( |
|
vq_model.decode( |
|
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer |
|
) |
|
.detach() |
|
.cpu() |
|
.numpy()[0, 0] |
|
) |
|
audio_opt.append(audio) |
|
audio_opt.append(zero_wav) |
|
t4 = ttime() |
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) |
|
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( |
|
np.int16 |
|
) |
|
|
|
|
|
splits = { |
|
",", |
|
"。", |
|
"?", |
|
"!", |
|
",", |
|
".", |
|
"?", |
|
"!", |
|
"~", |
|
":", |
|
":", |
|
"—", |
|
"…", |
|
} |
|
|
|
|
|
def split(todo_text): |
|
todo_text = todo_text.replace("……", "。").replace("——", ",") |
|
if todo_text[-1] not in splits: |
|
todo_text += "。" |
|
i_split_head = i_split_tail = 0 |
|
len_text = len(todo_text) |
|
todo_texts = [] |
|
while 1: |
|
if i_split_head >= len_text: |
|
break |
|
if todo_text[i_split_head] in splits: |
|
i_split_head += 1 |
|
todo_texts.append(todo_text[i_split_tail:i_split_head]) |
|
i_split_tail = i_split_head |
|
else: |
|
i_split_head += 1 |
|
return todo_texts |
|
|
|
|
|
def cut1(inp): |
|
inp = inp.strip("\n") |
|
inps = split(inp) |
|
split_idx = list(range(0, len(inps), 5)) |
|
split_idx[-1] = None |
|
if len(split_idx) > 1: |
|
opts = [] |
|
for idx in range(len(split_idx) - 1): |
|
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) |
|
else: |
|
opts = [inp] |
|
return "\n".join(opts) |
|
|
|
|
|
def cut2(inp): |
|
inp = inp.strip("\n") |
|
inps = split(inp) |
|
if len(inps) < 2: |
|
return [inp] |
|
opts = [] |
|
summ = 0 |
|
tmp_str = "" |
|
for i in range(len(inps)): |
|
summ += len(inps[i]) |
|
tmp_str += inps[i] |
|
if summ > 50: |
|
summ = 0 |
|
opts.append(tmp_str) |
|
tmp_str = "" |
|
if tmp_str != "": |
|
opts.append(tmp_str) |
|
if len(opts[-1]) < 50: |
|
opts[-2] = opts[-2] + opts[-1] |
|
opts = opts[:-1] |
|
return "\n".join(opts) |
|
|
|
|
|
def cut3(inp): |
|
inp = inp.strip("\n") |
|
return "\n".join(["%s。" % item for item in inp.strip("。").split("。")]) |
|
|
|
|
|
with gr.Blocks(title="GPT-SoVITS WebUI") as app: |
|
gr.Markdown( |
|
value="本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>." |
|
) |
|
|
|
|
|
with gr.Group(): |
|
gr.Markdown(value="*请上传并填写参考信息") |
|
with gr.Row(): |
|
inp_ref = gr.Audio(label="请上传参考音频", type="filepath") |
|
prompt_text = gr.Textbox(label="参考音频的文本", value="") |
|
prompt_language = gr.Dropdown( |
|
label="参考音频的语种", choices=["中文", "英文", "日文"], value="中文" |
|
) |
|
gr.Markdown(value="*请填写需要合成的目标文本") |
|
with gr.Row(): |
|
text = gr.Textbox(label="需要合成的文本", value="") |
|
text_language = gr.Dropdown( |
|
label="需要合成的语种", choices=["中文", "英文", "日文"], value="中文" |
|
) |
|
inference_button = gr.Button("合成语音", variant="primary") |
|
output = gr.Audio(label="输出的语音") |
|
inference_button.click( |
|
get_tts_wav, |
|
[inp_ref, prompt_text, prompt_language, text, text_language], |
|
[output], |
|
) |
|
|
|
gr.Markdown(value="文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。") |
|
with gr.Row(): |
|
text_inp = gr.Textbox(label="需要合成的切分前文本", value="") |
|
button1 = gr.Button("凑五句一切", variant="primary") |
|
button2 = gr.Button("凑50字一切", variant="primary") |
|
button3 = gr.Button("按中文句号。切", variant="primary") |
|
text_opt = gr.Textbox(label="切分后文本", value="") |
|
button1.click(cut1, [text_inp], [text_opt]) |
|
button2.click(cut2, [text_inp], [text_opt]) |
|
button3.click(cut3, [text_inp], [text_opt]) |
|
gr.Markdown(value="后续将支持混合语种编码文本输入。") |
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch( |
|
server_name="0.0.0.0", |
|
inbrowser=True, |
|
server_port=infer_ttswebui, |
|
quiet=True, |
|
) |
|
|