# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import numpy as np import paddle from ..configuration_utils import ConfigMixin, register_to_config from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS from .scheduling_utils import SchedulerMixin, SchedulerOutput class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Scheduler created by @crowsonkb in [k_diffusion](https://github.com/crowsonkb/k-diffusion), see: https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188 Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022). [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) """ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() order = 2 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.00085, # sensible defaults beta_end: float = 0.012, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, prediction_type: str = "epsilon", ): if trained_betas is not None: self.betas = paddle.to_tensor(trained_betas, dtype="float32") elif beta_schedule == "linear": self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32") elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2 else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = paddle.cumprod(self.alphas, 0) # set all values self.set_timesteps(num_train_timesteps, num_train_timesteps) def index_for_timestep(self, timestep): indices = (self.timesteps == timestep).nonzero() if self.state_in_first_order: pos = -1 else: pos = 0 return indices[pos].item() def scale_model_input( self, sample: paddle.Tensor, timestep: Union[float, paddle.Tensor], ) -> paddle.Tensor: """ Args: Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. sample (`paddle.Tensor`): input sample timestep (`int`, optional): current timestep Returns: `paddle.Tensor`: scaled input sample """ step_index = self.index_for_timestep(timestep) if self.state_in_first_order: sigma = self.sigmas[step_index] else: sigma = self.sigmas_interpol[step_index - 1] sample = sample / ((sigma**2 + 1) ** 0.5) return sample def set_timesteps( self, num_inference_steps: int, num_train_timesteps: Optional[int] = None, ): """ Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ self.num_inference_steps = num_inference_steps num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy() sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) self.log_sigmas = paddle.to_tensor(np.log(sigmas), dtype="float32") sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) sigmas = paddle.to_tensor(sigmas) # compute up and down sigmas sigmas_next = sigmas.roll(-1) sigmas_next[-1] = 0.0 sigmas_up = (sigmas_next**2 * (sigmas**2 - sigmas_next**2) / sigmas**2) ** 0.5 sigmas_down = (sigmas_next**2 - sigmas_up**2) ** 0.5 sigmas_down[-1] = 0.0 # compute interpolated sigmas sigmas_interpol = sigmas.log().lerp(sigmas_down.log(), 0.5).exp() sigmas_interpol[-2:] = 0.0 # set sigmas self.sigmas = paddle.concat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) self.sigmas_interpol = paddle.concat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]] ) self.sigmas_up = paddle.concat([sigmas_up[:1], sigmas_up[1:].repeat_interleave(2), sigmas_up[-1:]]) self.sigmas_down = paddle.concat([sigmas_down[:1], sigmas_down[1:].repeat_interleave(2), sigmas_down[-1:]]) # standard deviation of the initial noise distribution self.init_noise_sigma = self.sigmas.max() timesteps = paddle.to_tensor(timesteps) timesteps_interpol = self.sigma_to_t(sigmas_interpol) interleaved_timesteps = paddle.stack((timesteps_interpol[:-2, None], timesteps[1:, None]), axis=-1).flatten() timesteps = paddle.concat([timesteps[:1], interleaved_timesteps]) self.timesteps = timesteps self.sample = None def sigma_to_t(self, sigma): # get log sigma log_sigma = sigma.log() # get distribution dists = log_sigma - self.log_sigmas[:, None] # get sigmas range low_idx = (dists >= 0).cast("int64").cumsum(axis=0).argmax(axis=0).clip(max=self.log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = self.log_sigmas[low_idx] high = self.log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = w.clip(0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t @property def state_in_first_order(self): return self.sample is None def step( self, model_output: Union[paddle.Tensor, np.ndarray], timestep: Union[float, paddle.Tensor], sample: Union[paddle.Tensor, np.ndarray], generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Args: Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). model_output (`paddle.Tensor` or `np.ndarray`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor` or `np.ndarray`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ step_index = self.index_for_timestep(timestep) if self.state_in_first_order: sigma = self.sigmas[step_index] sigma_interpol = self.sigmas_interpol[step_index] sigma_up = self.sigmas_up[step_index] sigma_down = self.sigmas_down[step_index - 1] else: # 2nd order / KPDM2's method sigma = self.sigmas[step_index - 1] sigma_interpol = self.sigmas_interpol[step_index - 1] sigma_up = self.sigmas_up[step_index - 1] sigma_down = self.sigmas_down[step_index - 1] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API gamma = 0 sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now noise = paddle.randn(model_output.shape, dtype=model_output.dtype, generator=generator) # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol pred_original_sample = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order derivative = (sample - pred_original_sample) / sigma_hat # 3. delta timestep dt = sigma_interpol - sigma_hat # store for 2nd order step self.sample = sample self.dt = dt prev_sample = sample + derivative * dt else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order derivative = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep dt = sigma_down - sigma_hat sample = self.sample self.sample = None prev_sample = sample + derivative * dt prev_sample = prev_sample + noise * sigma_up if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def add_noise( self, original_samples: paddle.Tensor, noise: paddle.Tensor, timesteps: paddle.Tensor, ) -> paddle.Tensor: # Make sure sigmas and timesteps have the same dtype as original_samples self.sigmas = self.sigmas.cast(original_samples.dtype) step_indices = [self.index_for_timestep(t) for t in timesteps] sigma = self.sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps