Spaces:
Runtime error
Runtime error
import os | |
from ultralytics import YOLO | |
import supervision as sv | |
import gradio as gr | |
os.system("wget https://raw.githubusercontent.com/spmallick/learnopencv/master/Understanding-Multiple-Object-Tracking-using-DeepSORT/yolov5/football-video.mp4") | |
os.system("wget https://raw.githubusercontent.com/spmallick/learnopencv/master/MultiObjectTracker/videos/run.mp4") | |
def process_video( | |
source_video_path: str, | |
source_weights_path: str, | |
confidence_threshold: float = 0.3, | |
iou_threshold: float = 0.7,): | |
model = YOLO(source_weights_path + '.pt') | |
tracker = sv.ByteTrack() | |
box_annotator = sv.BoxAnnotator() | |
frame_generator = sv.get_video_frames_generator( | |
source_path=source_video_path) | |
confidence_threshold = confidence_threshold / 100 | |
iou_threshold = iou_threshold / 100 | |
# video_info = sv.VideoInfo.from_video_path(video_path=source_video_path) | |
# with sv.VideoSink(target_path=target_video_path, video_info=video_info) as sink: | |
for frame in frame_generator: | |
results = model( | |
frame, verbose=False, conf=confidence_threshold, iou=iou_threshold | |
)[0] | |
detections = sv.Detections.from_ultralytics(results) | |
detections = tracker.update_with_detections(detections) | |
labels = [ | |
f"#{tracker_id} {model.model.names[class_id]}" | |
for _, _, _, class_id, tracker_id in detections | |
] | |
annotated_frame = box_annotator.annotate( | |
scene=frame.copy(), detections=detections, labels=labels | |
) | |
yield annotated_frame | |
# sink.write_frame(frame=annotated_frame) | |
inputs_thresh = [ | |
gr.components.Video(type="filepath", label="Input Video"), | |
gr.inputs.Radio(label="Detection Methods", | |
choices=[ | |
"yolov5s", "yolov8s" | |
]), | |
gr.components.Slider(label="Class Probability Value", | |
value=30, minimum=1, maximum=100, step=1), | |
gr.components.Slider(label="IOU threshold Value", | |
value=50, minimum=1, maximum=100, step=1), | |
] | |
outputs_thresh = [ | |
gr.components.Image(type="numpy", label="Output") | |
] | |
tracker_tab = gr.Interface( | |
process_video, | |
inputs=inputs_thresh, | |
outputs=outputs_thresh, | |
title="supervision", | |
examples=[["run.mp4", "yolov5s"], ["football-video.mp4", "yolov8s"]], | |
description="Gradio based demo for <a href='https://github.com/roboflow/supervision' style='text-decoration: underline' target='_blank'>roboflow/supervision</a>, We write your reusable computer vision tools." | |
) | |