import os import gradio as gr import numpy as np import supervision as sv from ultralytics import YOLO def detect(image, weights): model = YOLO(weights) result = model(image, verbose=False)[0] detections = sv.Detections.from_ultralytics(result) box_annotator = sv.BoxAnnotator() annotated_image = box_annotator.annotate(image.copy(), detections=detections) return annotated_image if __name__ == '__main__': gr.Interface( detect, [gr.Image(type="numpy"), gr.Dropdown(choices=["yolov5s", "yolov5s6"])], gr.Image(type="numpy"), title="Yolov5", examples=[["https://media.roboflow.com/notebooks/examples/dog.jpeg", "yolov5s"]], description= "Gradio based demo for roboflow/supervision, We write your reusable computer vision tools." ).launch()