Spaces:
Runtime error
Runtime error
File size: 13,353 Bytes
17d0a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import time
import threading
from toolbox import update_ui, Singleton
from multiprocessing import Process, Pipe
from contextlib import redirect_stdout
from request_llms.queued_pipe import create_queue_pipe
class ThreadLock(object):
def __init__(self):
self._lock = threading.Lock()
def acquire(self):
# print("acquiring", self)
#traceback.print_tb
self._lock.acquire()
# print("acquired", self)
def release(self):
# print("released", self)
#traceback.print_tb
self._lock.release()
def __enter__(self):
self.acquire()
def __exit__(self, type, value, traceback):
self.release()
@Singleton
class GetSingletonHandle():
def __init__(self):
self.llm_model_already_running = {}
def get_llm_model_instance(self, cls, *args, **kargs):
if cls not in self.llm_model_already_running:
self.llm_model_already_running[cls] = cls(*args, **kargs)
return self.llm_model_already_running[cls]
elif self.llm_model_already_running[cls].corrupted:
self.llm_model_already_running[cls] = cls(*args, **kargs)
return self.llm_model_already_running[cls]
else:
return self.llm_model_already_running[cls]
def reset_tqdm_output():
import sys, tqdm
def status_printer(self, file):
fp = file
if fp in (sys.stderr, sys.stdout):
getattr(sys.stderr, 'flush', lambda: None)()
getattr(sys.stdout, 'flush', lambda: None)()
def fp_write(s):
print(s)
last_len = [0]
def print_status(s):
from tqdm.utils import disp_len
len_s = disp_len(s)
fp_write('\r' + s + (' ' * max(last_len[0] - len_s, 0)))
last_len[0] = len_s
return print_status
tqdm.tqdm.status_printer = status_printer
class LocalLLMHandle(Process):
def __init__(self):
# ⭐run in main process
super().__init__(daemon=True)
self.is_main_process = True # init
self.corrupted = False
self.load_model_info()
self.parent, self.child = create_queue_pipe()
self.parent_state, self.child_state = create_queue_pipe()
# allow redirect_stdout
self.std_tag = "[Subprocess Message] "
self.running = True
self._model = None
self._tokenizer = None
self.state = ""
self.check_dependency()
self.is_main_process = False # state wrap for child process
self.start()
self.is_main_process = True # state wrap for child process
self.threadLock = ThreadLock()
def get_state(self):
# ⭐run in main process
while self.parent_state.poll():
self.state = self.parent_state.recv()
return self.state
def set_state(self, new_state):
# ⭐run in main process or 🏃♂️🏃♂️🏃♂️ run in child process
if self.is_main_process:
self.state = new_state
else:
self.child_state.send(new_state)
def load_model_info(self):
# 🏃♂️🏃♂️🏃♂️ run in child process
raise NotImplementedError("Method not implemented yet")
self.model_name = ""
self.cmd_to_install = ""
def load_model_and_tokenizer(self):
"""
This function should return the model and the tokenizer
"""
# 🏃♂️🏃♂️🏃♂️ run in child process
raise NotImplementedError("Method not implemented yet")
def llm_stream_generator(self, **kwargs):
# 🏃♂️🏃♂️🏃♂️ run in child process
raise NotImplementedError("Method not implemented yet")
def try_to_import_special_deps(self, **kwargs):
"""
import something that will raise error if the user does not install requirement_*.txt
"""
# ⭐run in main process
raise NotImplementedError("Method not implemented yet")
def check_dependency(self):
# ⭐run in main process
try:
self.try_to_import_special_deps()
self.set_state("`依赖检测通过`")
self.running = True
except:
self.set_state(f"缺少{self.model_name}的依赖,如果要使用{self.model_name},除了基础的pip依赖以外,您还需要运行{self.cmd_to_install}安装{self.model_name}的依赖。")
self.running = False
def run(self):
# 🏃♂️🏃♂️🏃♂️ run in child process
# 第一次运行,加载参数
self.child.flush = lambda *args: None
self.child.write = lambda x: self.child.send(self.std_tag + x)
reset_tqdm_output()
self.set_state("`尝试加载模型`")
try:
with redirect_stdout(self.child):
self._model, self._tokenizer = self.load_model_and_tokenizer()
except:
self.set_state("`加载模型失败`")
self.running = False
from toolbox import trimmed_format_exc
self.child.send(
f'[Local Message] 不能正常加载{self.model_name}的参数.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[FinishBad]')
raise RuntimeError(f"不能正常加载{self.model_name}的参数!")
self.set_state("`准备就绪`")
while True:
# 进入任务等待状态
kwargs = self.child.recv()
# 收到消息,开始请求
try:
for response_full in self.llm_stream_generator(**kwargs):
self.child.send(response_full)
# print('debug' + response_full)
self.child.send('[Finish]')
# 请求处理结束,开始下一个循环
except:
from toolbox import trimmed_format_exc
self.child.send(
f'[Local Message] 调用{self.model_name}失败.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
self.child.send('[Finish]')
def clear_pending_messages(self):
# ⭐run in main process
while True:
if self.parent.poll():
self.parent.recv()
continue
for _ in range(5):
time.sleep(0.5)
if self.parent.poll():
r = self.parent.recv()
continue
break
return
def stream_chat(self, **kwargs):
# ⭐run in main process
if self.get_state() == "`准备就绪`":
yield "`正在等待线程锁,排队中请稍后 ...`"
with self.threadLock:
if self.parent.poll():
yield "`排队中请稍后 ...`"
self.clear_pending_messages()
self.parent.send(kwargs)
std_out = ""
std_out_clip_len = 4096
while True:
res = self.parent.recv()
# pipe_watch_dog.feed()
if res.startswith(self.std_tag):
new_output = res[len(self.std_tag):]
std_out = std_out[:std_out_clip_len]
# print(new_output, end='')
std_out = new_output + std_out
yield self.std_tag + '\n```\n' + std_out + '\n```\n'
elif res == '[Finish]':
break
elif res == '[FinishBad]':
self.running = False
self.corrupted = True
break
else:
std_out = ""
yield res
def get_local_llm_predict_fns(LLMSingletonClass, model_name, history_format='classic'):
load_message = f"{model_name}尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,{model_name}消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
refer to request_llms/bridge_all.py
"""
_llm_handle = GetSingletonHandle().get_llm_model_instance(LLMSingletonClass)
if len(observe_window) >= 1:
observe_window[0] = load_message + "\n\n" + _llm_handle.get_state()
if not _llm_handle.running:
raise RuntimeError(_llm_handle.get_state())
if history_format == 'classic':
# 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
history_feedin.append([sys_prompt, "Certainly!"])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]])
elif history_format == 'chatglm3':
# 有 sys_prompt 接口
conversation_cnt = len(history) // 2
history_feedin = [{"role": "system", "content": sys_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
history_feedin.append(what_i_have_asked)
history_feedin.append(what_gpt_answer)
else:
history_feedin[-1]['content'] = what_gpt_answer['content']
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
if len(observe_window) >= 1:
observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream=True, additional_fn=None):
"""
refer to request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
_llm_handle = GetSingletonHandle().get_llm_model_instance(LLMSingletonClass)
chatbot[-1] = (inputs, load_message + "\n\n" + _llm_handle.get_state())
yield from update_ui(chatbot=chatbot, history=[])
if not _llm_handle.running:
raise RuntimeError(_llm_handle.get_state())
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(
additional_fn, inputs, history, chatbot)
# 处理历史信息
if history_format == 'classic':
# 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
history_feedin.append([system_prompt, "Certainly!"])
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]])
elif history_format == 'chatglm3':
# 有 sys_prompt 接口
conversation_cnt = len(history) // 2
history_feedin = [{"role": "system", "content": system_prompt}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
history_feedin.append(what_i_have_asked)
history_feedin.append(what_gpt_answer)
else:
history_feedin[-1]['content'] = what_gpt_answer['content']
# 开始接收回复
response = f"[Local Message] 等待{model_name}响应中 ..."
for response in _llm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == f"[Local Message] 等待{model_name}响应中 ...":
response = f"[Local Message] {model_name}响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)
return predict_no_ui_long_connection, predict
|