Spaces:
Runtime error
Runtime error
File size: 8,053 Bytes
971ac20 a1fe67d 971ac20 a1fe67d 971ac20 a1fe67d 5c0a088 971ac20 5c0a088 a1fe67d 971ac20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
from functools import lru_cache
from toolbox import gen_time_str
from toolbox import promote_file_to_downloadzone
from toolbox import write_history_to_file, promote_file_to_downloadzone
from toolbox import get_conf
from toolbox import ProxyNetworkActivate
from colorful import *
import requests
import random
import copy
import os
import math
class GROBID_OFFLINE_EXCEPTION(Exception): pass
def get_avail_grobid_url():
GROBID_URLS, = get_conf('GROBID_URLS')
if len(GROBID_URLS) == 0: return None
try:
_grobid_url = random.choice(GROBID_URLS) # 随机负载均衡
if _grobid_url.endswith('/'): _grobid_url = _grobid_url.rstrip('/')
with ProxyNetworkActivate('Connect_Grobid'):
res = requests.get(_grobid_url+'/api/isalive')
if res.text=='true': return _grobid_url
else: return None
except:
return None
@lru_cache(maxsize=32)
def parse_pdf(pdf_path, grobid_url):
import scipdf # pip install scipdf_parser
if grobid_url.endswith('/'): grobid_url = grobid_url.rstrip('/')
try:
with ProxyNetworkActivate('Connect_Grobid'):
article_dict = scipdf.parse_pdf_to_dict(pdf_path, grobid_url=grobid_url)
except GROBID_OFFLINE_EXCEPTION:
raise GROBID_OFFLINE_EXCEPTION("GROBID服务不可用,请修改config中的GROBID_URL,可修改成本地GROBID服务。")
except:
raise RuntimeError("解析PDF失败,请检查PDF是否损坏。")
return article_dict
def produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files):
# -=-=-=-=-=-=-=-= 写出第1个文件:翻译前后混合 -=-=-=-=-=-=-=-=
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=f"{gen_time_str()}translated_and_original.md", file_fullname=None)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
# -=-=-=-=-=-=-=-= 写出第2个文件:仅翻译后的文本 -=-=-=-=-=-=-=-=
translated_res_array = []
# 记录当前的大章节标题:
last_section_name = ""
for index, value in enumerate(gpt_response_collection):
# 先挑选偶数序列号:
if index % 2 != 0:
# 先提取当前英文标题:
cur_section_name = gpt_response_collection[index-1].split('\n')[0].split(" Part")[0]
# 如果index是1的话,则直接使用first section name:
if cur_section_name != last_section_name:
cur_value = cur_section_name + '\n'
last_section_name = copy.deepcopy(cur_section_name)
else:
cur_value = ""
# 再做一个小修改:重新修改当前part的标题,默认用英文的
cur_value += value
translated_res_array.append(cur_value)
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + translated_res_array,
file_basename = f"{gen_time_str()}-translated_only.md",
file_fullname = None,
auto_caption = False)
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(res_path)+'.md', chatbot=chatbot)
generated_conclusion_files.append(res_path)
return res_path
def translate_pdf(article_dict, llm_kwargs, chatbot, fp, generated_conclusion_files, TOKEN_LIMIT_PER_FRAGMENT, DST_LANG):
from crazy_functions.crazy_utils import construct_html
from crazy_functions.crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from crazy_functions.crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
prompt = "以下是一篇学术论文的基本信息:\n"
# title
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
# authors
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
# abstract
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
# command
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
# 单线,获取文章meta信息
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=prompt,
inputs_show_user=prompt,
llm_kwargs=llm_kwargs,
chatbot=chatbot, history=[],
sys_prompt="You are an academic paper reader。",
)
# 多线,翻译
inputs_array = []
inputs_show_user_array = []
# get_token_num
from request_llm.bridge_all import model_info
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
def break_down(txt):
raw_token_num = get_token_num(txt)
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
return [txt]
else:
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
# find a smooth token limit to achieve even seperation
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
token_limit_smooth = raw_token_num // count + count
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
for section in article_dict.get('sections'):
if len(section['text']) == 0: continue
section_frags = break_down(section['text'])
for i, fragment in enumerate(section_frags):
heading = section['heading']
if len(section_frags) > 1: heading += f' Part-{i+1}'
inputs_array.append(
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
)
inputs_show_user_array.append(
f"# {heading}\n\n{fragment}"
)
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
inputs_array=inputs_array,
inputs_show_user_array=inputs_show_user_array,
llm_kwargs=llm_kwargs,
chatbot=chatbot,
history_array=[meta for _ in inputs_array],
sys_prompt_array=[
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
)
# -=-=-=-=-=-=-=-= 写出Markdown文件 -=-=-=-=-=-=-=-=
produce_report_markdown(gpt_response_collection, meta, paper_meta_info, chatbot, fp, generated_conclusion_files)
# -=-=-=-=-=-=-=-= 写出HTML文件 -=-=-=-=-=-=-=-=
ch = construct_html()
orig = ""
trans = ""
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
for i,k in enumerate(gpt_response_collection_html):
if i%2==0:
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
else:
# 先提取当前英文标题:
cur_section_name = gpt_response_collection[i-1].split('\n')[0].split(" Part")[0]
cur_value = cur_section_name + "\n" + gpt_response_collection_html[i]
gpt_response_collection_html[i] = cur_value
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
final.extend(gpt_response_collection_html)
for i, k in enumerate(final):
if i%2==0:
orig = k
if i%2==1:
trans = k
ch.add_row(a=orig, b=trans)
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
html_file = ch.save_file(create_report_file_name)
generated_conclusion_files.append(html_file)
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|