Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,371 Bytes
a6d7aa6 abf3d6e a6d7aa6 7b183da a6d7aa6 7b183da a6d7aa6 4fb0ca5 7b183da f6916ac 7b183da a6d7aa6 7b183da f6916ac a6d7aa6 67e6d75 abf3d6e a6d7aa6 abf3d6e a6d7aa6 abf3d6e a6d7aa6 abf3d6e a6d7aa6 7b183da a6d7aa6 afad7b5 a6d7aa6 abf3d6e a6d7aa6 abf3d6e a6d7aa6 abf3d6e a6d7aa6 abf3d6e a6d7aa6 abf3d6e a6d7aa6 abf3d6e 7b183da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import spaces
import gradio as gr
from tryon_inference import run_inference
import os
import numpy as np
from PIL import Image
import tempfile
import torch
from diffusers import FluxTransformer2DModel, FluxFillPipeline
import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
print('Loading diffusion model ...')
transformer = FluxTransformer2DModel.from_pretrained(
"xiaozaa/catvton-flux-alpha",
torch_dtype=dtype
)
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
torch_dtype=dtype
).to(device)
print('Loading Finished!')
@spaces.GPU(duration=90)
def gradio_inference(
image_data,
garment,
num_steps=50,
guidance_scale=30.0,
seed=-1,
width=768,
height=1024
):
"""Wrapper function for Gradio interface"""
# Use temporary directory
with tempfile.TemporaryDirectory() as tmp_dir:
# Save inputs to temp directory
temp_image = os.path.join(tmp_dir, "image.png")
temp_mask = os.path.join(tmp_dir, "mask.png")
temp_garment = os.path.join(tmp_dir, "garment.png")
# Extract image and mask from ImageEditor data
image = image_data["background"]
mask = image_data["layers"][0] # First layer contains the mask
# Convert to numpy array and process mask
mask_array = np.array(mask)
is_black = np.all(mask_array < 10, axis=2)
mask = Image.fromarray(((~is_black) * 255).astype(np.uint8))
# Save files to temp directory
image.save(temp_image)
mask.save(temp_mask)
garment.save(temp_garment)
try:
# Run inference
_, tryon_result = run_inference(
pipe=pipe,
image_path=temp_image,
mask_path=temp_mask,
garment_path=temp_garment,
num_steps=num_steps,
guidance_scale=guidance_scale,
seed=seed,
size=(width, height)
)
return tryon_result
except Exception as e:
raise gr.Error(f"Error during inference: {str(e)}")
with gr.Blocks() as demo:
gr.Markdown("""
# CATVTON FLUX Virtual Try-On Demo
Upload a model image, draw a mask, and a garment image to generate virtual try-on results.
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/xiaozaa/catvton-flux-alpha)
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/nftblackmagic/catvton-flux)
""")
# gr.Video("example/github.mp4", label="Demo Video: How to use the tool")
with gr.Column():
with gr.Row():
with gr.Column():
image_input = gr.ImageMask(
label="Model Image (Click 'Edit' and draw mask over the clothing area)",
type="pil",
height=600,
width=300
)
gr.Examples(
examples=[
["./example/person/00008_00.jpg"],
["./example/person/00055_00.jpg"],
["./example/person/00057_00.jpg"],
["./example/person/00067_00.jpg"],
["./example/person/00069_00.jpg"],
],
inputs=[image_input],
label="Person Images",
)
with gr.Column():
garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300)
gr.Examples(
examples=[
["./example/garment/04564_00.jpg"],
["./example/garment/00055_00.jpg"],
["./example/garment/00396_00.jpg"],
["./example/garment/00067_00.jpg"],
["./example/garment/00069_00.jpg"],
],
inputs=[garment_input],
label="Garment Images",
)
with gr.Column():
tryon_output = gr.Image(label="Try-On Result", height=600, width=300)
with gr.Row():
num_steps = gr.Slider(
minimum=1,
maximum=100,
value=30,
step=1,
label="Number of Steps"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=50.0,
value=30.0,
step=0.5,
label="Guidance Scale"
)
seed = gr.Slider(
minimum=-1,
maximum=2147483647,
step=1,
value=-1,
label="Seed (-1 for random)"
)
width = gr.Slider(
minimum=256,
maximum=1024,
step=64,
value=768,
label="Width"
)
height = gr.Slider(
minimum=256,
maximum=1024,
step=64,
value=1024,
label="Height"
)
submit_btn = gr.Button("Generate Try-On", variant="primary")
with gr.Row():
gr.Markdown("""
### Notes:
- The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation.
- The mask should indicate the region where the garment will be placed.
- The garment image should be on a clean background.
- The model is not perfect. It may generate some artifacts.
- The model is slow. Please be patient.
- The model is just for research purpose.
""")
submit_btn.click(
fn=gradio_inference,
inputs=[
image_input,
garment_input,
num_steps,
guidance_scale,
seed,
width,
height
],
outputs=[tryon_output],
api_name="try-on"
)
demo.launch()
|