File size: 4,422 Bytes
1beac4e
 
f610e83
4fd56c0
1beac4e
f610e83
 
 
4ae4b3e
3d6c87f
91af88a
 
 
 
 
4ae4b3e
c9f7eb5
df52708
dc2c372
4ae4b3e
 
f610e83
 
 
 
 
1beac4e
4fd56c0
 
5458c75
4fd56c0
 
1beac4e
 
24e20da
3d6c87f
24e20da
3d6c87f
1beac4e
 
 
91af88a
96426c9
1beac4e
 
 
 
 
96426c9
1beac4e
 
 
 
abf3d6e
4ae4b3e
 
 
 
 
 
 
 
 
 
 
 
 
1beac4e
 
 
 
 
776470c
 
 
1beac4e
 
4fb0ca5
abf3d6e
 
 
4fb0ca5
 
 
 
 
 
279641e
abf3d6e
96426c9
279641e
375bf59
abf3d6e
1beac4e
f610e83
abf3d6e
1beac4e
4ae4b3e
 
1beac4e
 
 
 
4fd56c0
 
 
 
 
 
 
 
 
 
 
 
 
 
1beac4e
 
 
b633718
 
 
1beac4e
 
375bf59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# catvton-flux

An state-of-the-art virtual try-on solution that combines the power of [CATVTON](https://arxiv.org/abs/2407.15886) (Contrastive Appearance and Topology Virtual Try-On) with Flux fill inpainting model for realistic and accurate clothing transfer.
Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering.

## Update

---
**Latest Achievement** 

(2024/11/26):
- Updated the weights. (Still training on the VITON-HD dataset only.)
    - Reduce the fine-tuning weights size (46GB -> 23GB)
    - Weights has better performance on garment small details/text.

(2024/11/25):
- Released lora weights. Lora weights achieved FID: `6.0675811767578125` on VITON-HD dataset. Test configuration: scale 30, step 30.
- Revise gradio demo. Added huggingface spaces support.
- Clean up the requirements.txt.

(2024/11/24):
- Released FID score and gradio demo
- CatVton-Flux-Alpha achieved **SOTA** performance with FID: `5.593255043029785` on VITON-HD dataset. Test configuration: scale 30, step 30. My VITON-HD test inferencing results available [here](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing)

---

## Showcase
| Original | Garment | Result |
|----------|---------|---------|
| ![Original](example/person/1.jpg) | ![Garment](example/garment/00035_00.jpg) | ![Result](example/result/1.png) |
| ![Original](example/person/1.jpg) | ![Garment](example/garment/04564_00.jpg) | ![Result](example/result/2.png) |
| ![Original](example/person/00008_00.jpg) | ![Garment](example/garment/00034_00.jpg) | ![Result](example/result/3.png) |

## Model Weights
Fine-tuning weights in Hugging Face: 🤗 [catvton-flux-alpha](https://huggingface.co/xiaozaa/catvton-flux-alpha)

LORA weights in Hugging Face: 🤗 [catvton-flux-lora-alpha](https://huggingface.co/xiaozaa/catvton-flux-lora-alpha)

The model weights are trained on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset.

## Prerequisites
Make sure you are running the code with VRAM >= 40GB. (I run all my experiments on a 80GB GPU, lower VRAM will cause OOM error. Will support lower VRAM in the future.)

```bash
bash
conda create -n flux python=3.10
conda activate flux
pip install -r requirements.txt
huggingface-cli login
```

## Usage

Run the following command to try on an image:

LORA version:
```bash
python tryon_inference_lora.py \
--image ./example/person/00008_00.jpg \
--mask ./example/person/00008_00_mask.png \
--garment ./example/garment/00034_00.jpg \
--seed 4096 \
--output_tryon test_lora.png \
--steps 30
```

Fine-tuning version:
```bash
python tryon_inference.py \
--image ./example/person/00008_00.jpg \
--mask ./example/person/00008_00_mask.png \
--garment ./example/garment/00034_00.jpg \
--seed 42 \
--output_tryon test.png \
--steps 30
```

Run the following command to start a gradio demo with LoRA weights:
```bash
python app.py
```

Run the following command to start a gradio demo without LoRA weights:
```bash
python app_no_lora.py
```

Gradio demo:

<!-- Option 2: Using a thumbnail linked to the video -->
[![Demo](example/github.jpg)](https://upcdn.io/FW25b7k/raw/uploads/github.mp4)


## TODO:
- [x] Release the FID score
- [x] Add gradio demo
- [ ] Release updated weights with better performance
- [x] Train a smaller model
- [ ] Support comfyui

## Citation

```bibtex
@misc{chong2024catvtonconcatenationneedvirtual,
 title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models}, 
 author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang},
 year={2024},
 eprint={2407.15886},
 archivePrefix={arXiv},
 primaryClass={cs.CV},
 url={https://arxiv.org/abs/2407.15886}, 
}
@article{lhhuang2024iclora,
  title={In-Context LoRA for Diffusion Transformers},
  author={Huang, Lianghua and Wang, Wei and Wu, Zhi-Fan and Shi, Yupeng and Dou, Huanzhang and Liang, Chen and Feng, Yutong and Liu, Yu and Zhou, Jingren},
  journal={arXiv preprint arxiv:2410.23775},
  year={2024}
}
```

Thanks to [Jim](https://github.com/nom) for insisting on spatial concatenation.
Thanks to [dingkang](https://github.com/dingkwang) [MoonBlvd](https://github.com/MoonBlvd) [Stevada](https://github.com/Stevada) for the helpful discussions.

## License
- The code is licensed under the MIT License.
- The model weights have the same license as Flux.1 Fill and VITON-HD.