Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import torch | |
from diffusers.utils import load_image, check_min_version | |
from diffusers import FluxPriorReduxPipeline, FluxFillPipeline | |
from diffusers import FluxTransformer2DModel | |
import numpy as np | |
from torchvision import transforms | |
def run_inference( | |
image_path, | |
mask_path, | |
garment_path, | |
size=(576, 768), | |
num_steps=50, | |
guidance_scale=30, | |
seed=42, | |
pipe=None | |
): | |
# Build pipeline | |
if pipe is None: | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"xiaozaa/catvton-flux-alpha", | |
torch_dtype=torch.bfloat16 | |
) | |
pipe = FluxFillPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
else: | |
pipe.to("cuda") | |
pipe.transformer.to(torch.bfloat16) | |
# Add transform | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) # For RGB images | |
]) | |
mask_transform = transforms.Compose([ | |
transforms.ToTensor() | |
]) | |
# Load and process images | |
print("image_path", image_path) | |
image = load_image(image_path).convert("RGB").resize(size) | |
mask = load_image(mask_path).convert("RGB").resize(size) | |
garment = load_image(garment_path).convert("RGB").resize(size) | |
# Transform images using the new preprocessing | |
image_tensor = transform(image) | |
mask_tensor = mask_transform(mask)[:1] # Take only first channel | |
garment_tensor = transform(garment) | |
# Create concatenated images | |
inpaint_image = torch.cat([garment_tensor, image_tensor], dim=2) # Concatenate along width | |
garment_mask = torch.zeros_like(mask_tensor) | |
extended_mask = torch.cat([garment_mask, mask_tensor], dim=2) | |
prompt = f"The pair of images highlights a clothing and its styling on a model, high resolution, 4K, 8K; " \ | |
f"[IMAGE1] Detailed product shot of a clothing" \ | |
f"[IMAGE2] The same cloth is worn by a model in a lifestyle setting." | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
result = pipe( | |
height=size[1], | |
width=size[0] * 2, | |
image=inpaint_image, | |
mask_image=extended_mask, | |
num_inference_steps=num_steps, | |
generator=generator, | |
max_sequence_length=512, | |
guidance_scale=guidance_scale, | |
prompt=prompt, | |
).images[0] | |
# Split and save results | |
width = size[0] | |
garment_result = result.crop((0, 0, width, size[1])) | |
tryon_result = result.crop((width, 0, width * 2, size[1])) | |
return garment_result, tryon_result | |
def main(): | |
parser = argparse.ArgumentParser(description='Run FLUX virtual try-on inference') | |
parser.add_argument('--image', required=True, help='Path to the model image') | |
parser.add_argument('--mask', required=True, help='Path to the agnostic mask') | |
parser.add_argument('--garment', required=True, help='Path to the garment image') | |
parser.add_argument('--output-garment', default='flux_inpaint_garment.png', help='Output path for garment result') | |
parser.add_argument('--output-tryon', default='flux_inpaint_tryon.png', help='Output path for try-on result') | |
parser.add_argument('--steps', type=int, default=50, help='Number of inference steps') | |
parser.add_argument('--guidance-scale', type=float, default=30, help='Guidance scale') | |
parser.add_argument('--seed', type=int, default=0, help='Random seed') | |
parser.add_argument('--width', type=int, default=768, help='Width') | |
parser.add_argument('--height', type=int, default=576, help='Height') | |
args = parser.parse_args() | |
check_min_version("0.30.2") | |
garment_result, tryon_result = run_inference( | |
image_path=args.image, | |
mask_path=args.mask, | |
garment_path=args.garment, | |
output_garment_path=args.output_garment, | |
output_tryon_path=args.output_tryon, | |
num_steps=args.steps, | |
guidance_scale=args.guidance_scale, | |
seed=args.seed, | |
size=(args.width, args.height) | |
) | |
output_garment_path=args.output_garment, | |
output_tryon_path=args.output_tryon, | |
if output_garment_path is not None: | |
garment_result.save(output_garment_path) | |
tryon_result.save(output_tryon_path) | |
print("Successfully saved garment and try-on images") | |
if __name__ == "__main__": | |
main() |