# catvton-flux An state-of-the-art virtual try-on solution that combines the power of [CATVTON](https://arxiv.org/abs/2407.15886) (Contrastive Appearance and Topology Virtual Try-On) with Flux fill inpainting model for realistic and accurate clothing transfer. Also inspired by [In-Context LoRA](https://arxiv.org/abs/2410.23775) for prompt engineering. ## Update --- **Latest Achievement** (2024/11/25): - Released lora weights. FID: 6.0675811767578125 on VITON-HD dataset. Test configuration: scale 30, step 30. (2024/11/24): - Released FID score and gradio demo - CatVton-Flux-Alpha achieved **SOTA** performance with FID: `5.593255043029785` on VITON-HD dataset. Test configuration: scale 30, step 30. My VITON-HD test inferencing results available [here](https://drive.google.com/file/d/1T2W5R1xH_uszGVD8p6UUAtWyx43rxGmI/view?usp=sharing) --- ## Showcase | Original | Garment | Result | |----------|---------|---------| | ![Original](example/person/1.jpg) | ![Garment](example/garment/00035_00.jpg) | ![Result](example/result/1.png) | | ![Original](example/person/1.jpg) | ![Garment](example/garment/04564_00.jpg) | ![Result](example/result/2.png) | | ![Original](example/person/00008_00.jpg) | ![Garment](example/garment/00034_00.jpg) | ![Result](example/result/3.png) | ## Model Weights LORA weights in Hugging Face: 🤗 [catvton-flux-alpha](https://huggingface.co/xiaozaa/catvton-flux-alpha) Fine-tuning weights in Hugging Face: 🤗 [catvton-flux-lora-alpha](https://huggingface.co/xiaozaa/catvton-flux-lora-alpha) The model weights are trained on the [VITON-HD](https://github.com/shadow2496/VITON-HD) dataset. ## Prerequisites Make sure you are runing the code with VRAM >= 40GB. (I run all my experiments on a 80GB GPU, lower VRAM will cause OOM error. Will support lower VRAM in the future.) ```bash bash conda create -n flux python=3.10 conda activate flux pip install -r requirements.txt huggingface-cli login ``` ## Usage Run the following command to try on an image: LORA version: ```bash python tryon_inference_lora.py \ --image ./example/person/00008_00.jpg \ --mask ./example/person/00008_00_mask.png \ --garment ./example/garment/00034_00.jpg \ --seed 4096 \ --output_tryon test_lora.png \ --steps 30 ``` Fine-tuning version: ```bash python tryon_inference.py \ --image ./example/person/00008_00.jpg \ --mask ./example/person/00008_00_mask.png \ --garment ./example/garment/00034_00.jpg \ --seed 42 \ --output_tryon test.png \ --steps 30 ``` Run the following command to start a gradio demo: ```bash python app.py ``` Gradio demo: [![Demo](example/github.jpg)](https://github.com/user-attachments/assets/e1e69dbf-f8a8-4f34-a84a-e7be5b3d0aec) ## TODO: - [x] Release the FID score - [x] Add gradio demo - [ ] Release updated weights with better performance - [x] Train a smaller model - [ ] Support comfyui ## Citation ```bibtex @misc{chong2024catvtonconcatenationneedvirtual, title={CatVTON: Concatenation Is All You Need for Virtual Try-On with Diffusion Models}, author={Zheng Chong and Xiao Dong and Haoxiang Li and Shiyue Zhang and Wenqing Zhang and Xujie Zhang and Hanqing Zhao and Xiaodan Liang}, year={2024}, eprint={2407.15886}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2407.15886}, } @article{lhhuang2024iclora, title={In-Context LoRA for Diffusion Transformers}, author={Huang, Lianghua and Wang, Wei and Wu, Zhi-Fan and Shi, Yupeng and Dou, Huanzhang and Liang, Chen and Feng, Yutong and Liu, Yu and Zhou, Jingren}, journal={arXiv preprint arxiv:2410.23775}, year={2024} } ``` Thanks to [Jim](https://github.com/nom) for insisting on spatial concatenation. Thanks to [dingkang](https://github.com/dingkwang) [MoonBlvd](https://github.com/MoonBlvd) [Stevada](https://github.com/Stevada) for the helpful discussions. ## License - The code is licensed under the MIT License. - The model weights have the same license as Flux.1 Fill and VITON-HD.