Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,271 Bytes
81d8e7c 80bfecc 81d8e7c 841eb91 81d8e7c 8459bc2 dfe48d2 8459bc2 dfe48d2 5cfb194 8459bc2 61f1cb9 81d8e7c 46e3758 81d8e7c 46e3758 81d8e7c f83f451 81d8e7c 46e3758 f11e320 8bb5e11 81d8e7c 46e3758 81d8e7c 46e3758 81d8e7c f83f451 81d8e7c f83f451 81d8e7c f83f451 81d8e7c f83f451 81d8e7c f83f451 81d8e7c f83f451 8bb5e11 f83f451 81d8e7c cf40277 81d8e7c f83f451 81d8e7c cf40277 81d8e7c cf40277 81d8e7c cf40277 81d8e7c cf40277 81d8e7c cf40277 81d8e7c cf40277 0bab783 81d8e7c cf40277 81d8e7c 5cfb194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gradio as gr
import spaces
import torch
import torch.nn.functional as F
from safetensors.numpy import save_file, load_file
from omegaconf import OmegaConf
from transformers import AutoConfig
import cv2
from PIL import Image
import numpy as np
import json
import os
#
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInpaintPipeline, DDIMScheduler, AutoencoderKL
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, DDIMScheduler
from diffusers import DDIMScheduler, DDPMScheduler, DPMSolverMultistepScheduler
from diffusers.image_processor import VaeImageProcessor
#
from models.pipeline_mimicbrush import MimicBrushPipeline
from models.ReferenceNet import ReferenceNet
from models.depth_guider import DepthGuider
from mimicbrush import MimicBrush_RefNet
from data_utils import *
from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
from huggingface_hub import snapshot_download
snapshot_download(repo_id="xichenhku/cleansd", local_dir="./cleansd")
print('=== Pretrained SD weights downloaded ===')
snapshot_download(repo_id="xichenhku/MimicBrush", local_dir="./MimicBrush")
print('=== MimicBrush weights downloaded ===')
#sd_dir = ms_snapshot_download('xichen/cleansd', cache_dir='./modelscope')
#print('=== Pretrained SD weights downloaded ===')
#model_dir = ms_snapshot_download('xichen/MimicBrush', cache_dir='./modelscope')
#print('=== MimicBrush weights downloaded ===')
val_configs = OmegaConf.load('./configs/inference.yaml')
# === import Depth Anything ===
import sys
sys.path.append("./depthanything")
from torchvision.transforms import Compose
from depthanything.fast_import import depth_anything_model
from depthanything.depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
depth_anything_model.load_state_dict(torch.load(val_configs.model_path.depth_model))
# === load the checkpoint ===
base_model_path = val_configs.model_path.pretrained_imitativer_path
vae_model_path = val_configs.model_path.pretrained_vae_name_or_path
image_encoder_path = val_configs.model_path.image_encoder_path
ref_model_path = val_configs.model_path.pretrained_reference_path
mimicbrush_ckpt = val_configs.model_path.mimicbrush_ckpt_path
device = "cuda"
def pad_img_to_square(original_image, is_mask=False):
width, height = original_image.size
if height == width:
return original_image
if height > width:
padding = (height - width) // 2
new_size = (height, height)
else:
padding = (width - height) // 2
new_size = (width, width)
if is_mask:
new_image = Image.new("RGB", new_size, "black")
else:
new_image = Image.new("RGB", new_size, "white")
if height > width:
new_image.paste(original_image, (padding, 0))
else:
new_image.paste(original_image, (0, padding))
return new_image
def collage_region(low, high, mask):
mask = (np.array(mask) > 128).astype(np.uint8)
low = np.array(low).astype(np.uint8)
low = (low * 0).astype(np.uint8)
high = np.array(high).astype(np.uint8)
mask_3 = mask
collage = low * mask_3 + high * (1-mask_3)
collage = Image.fromarray(collage)
return collage
def resize_image_keep_aspect_ratio(image, target_size = 512):
height, width = image.shape[:2]
if height > width:
new_height = target_size
new_width = int(width * (target_size / height))
else:
new_width = target_size
new_height = int(height * (target_size / width))
resized_image = cv2.resize(image, (new_width, new_height))
return resized_image
def crop_padding_and_resize(ori_image, square_image):
ori_height, ori_width, _ = ori_image.shape
scale = max(ori_height / square_image.shape[0], ori_width / square_image.shape[1])
resized_square_image = cv2.resize(square_image, (int(square_image.shape[1] * scale), int(square_image.shape[0] * scale)))
padding_size = max(resized_square_image.shape[0] - ori_height, resized_square_image.shape[1] - ori_width)
if ori_height < ori_width:
top = padding_size // 2
bottom = resized_square_image.shape[0] - (padding_size - top)
cropped_image = resized_square_image[top:bottom, :,:]
else:
left = padding_size // 2
right = resized_square_image.shape[1] - (padding_size - left)
cropped_image = resized_square_image[:, left:right,:]
return cropped_image
def vis_mask(image, mask):
# mask 3 channle 255
mask = mask[:,:,0]
mask_contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw outlines, using random colors
outline_opacity = 0.5
outline_thickness = 5
outline_color = np.concatenate([ [255,255,255], [outline_opacity] ])
white_mask = np.ones_like(image) * 255
mask_bin_3 = np.stack([mask,mask,mask],-1) > 128
alpha = 0.5
image = ( white_mask * alpha + image * (1-alpha) ) * mask_bin_3 + image * (1-mask_bin_3)
cv2.polylines(image, mask_contours, True, outline_color, outline_thickness, cv2.LINE_AA)
return image
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
unet = UNet2DConditionModel.from_pretrained(base_model_path, subfolder="unet", in_channels=13, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(dtype=torch.float16)
pipe = MimicBrushPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
unet=unet,
feature_extractor=None,
safety_checker=None,
)
depth_guider = DepthGuider()
referencenet = ReferenceNet.from_pretrained(ref_model_path, subfolder="unet").to(dtype=torch.float16)
mimicbrush_model = MimicBrush_RefNet(pipe, image_encoder_path, mimicbrush_ckpt, depth_anything_model, depth_guider, referencenet, device)
mask_processor = VaeImageProcessor(vae_scale_factor=1, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
@spaces.GPU
def infer_single(ref_image, target_image, target_mask, seed = -1, num_inference_steps=50, guidance_scale = 5, enable_shape_control = False):
#return ref_image
"""
mask: 0/1 1-channel np.array
image: rgb np.array
"""
ref_image = ref_image.astype(np.uint8)
target_image = target_image.astype(np.uint8)
target_mask = target_mask .astype(np.uint8)
ref_image = Image.fromarray(ref_image.astype(np.uint8))
ref_image = pad_img_to_square(ref_image)
target_image = pad_img_to_square(Image.fromarray(target_image))
target_image_low = target_image
target_mask = np.stack([target_mask,target_mask,target_mask],-1).astype(np.uint8) * 255
target_mask_np = target_mask.copy()
target_mask = Image.fromarray(target_mask)
target_mask = pad_img_to_square(target_mask, True)
target_image_ori = target_image.copy()
target_image = collage_region(target_image_low, target_image, target_mask)
depth_image = target_image_ori.copy()
depth_image = np.array(depth_image)
depth_image = transform({'image': depth_image})['image']
depth_image = torch.from_numpy(depth_image).unsqueeze(0) / 255
if not enable_shape_control:
depth_image = depth_image * 0
mask_pt = mask_processor.preprocess(target_mask, height=512, width=512)
pred, depth_pred = mimicbrush_model.generate(pil_image=ref_image, depth_image = depth_image, num_samples=1, num_inference_steps=num_inference_steps,
seed=seed, image=target_image, mask_image=mask_pt, strength=1.0, guidance_scale=guidance_scale)
depth_pred = F.interpolate(depth_pred, size=(512,512), mode = 'bilinear', align_corners=True)[0][0]
depth_pred = (depth_pred - depth_pred.min()) / (depth_pred.max() - depth_pred.min()) * 255.0
depth_pred = depth_pred.detach().cpu().numpy().astype(np.uint8)
depth_pred = cv2.applyColorMap(depth_pred, cv2.COLORMAP_INFERNO)[:,:,::-1]
pred = pred[0]
pred = np.array(pred).astype(np.uint8)
return pred, depth_pred.astype(np.uint8)
def inference_single_image(ref_image,
tar_image,
tar_mask,
ddim_steps,
scale,
seed,
enable_shape_control,
):
if seed == -1:
seed = np.random.randint(10000)
pred, depth_pred = infer_single(ref_image, tar_image, tar_mask, seed, num_inference_steps=ddim_steps, guidance_scale = scale, enable_shape_control = enable_shape_control)
return pred, depth_pred
def run_local(base,
ref,
*args):
image = base["background"].convert("RGB") #base["image"].convert("RGB")
mask = base["layers"][0] #base["mask"].convert("L")
image = np.asarray(image)
mask = np.asarray(mask)[:,:,-1]
#print(image.shape, mask.shape, mask.max(), mask.min())
mask = np.where(mask > 128, 1, 0).astype(np.uint8)
ref_image = ref.convert("RGB")
ref_image = np.asarray(ref_image)
if mask.sum() == 0:
raise gr.Error('No mask for the background image.')
mask_3 = np.stack([mask,mask,mask],-1).astype(np.uint8) * 255
mask_alpha = mask_3.copy()
for i in range(10):
mask_alpha = cv2.GaussianBlur(mask_alpha, (3, 3), 0)
synthesis, depth_pred = inference_single_image(ref_image.copy(), image.copy(), mask.copy(), *args)
synthesis = crop_padding_and_resize(image, synthesis)
depth_pred = crop_padding_and_resize(image, depth_pred)
mask_3_bin = mask_alpha / 255
synthesis = synthesis * mask_3_bin + image * (1-mask_3_bin)
vis_source = vis_mask(image, mask_3).astype(np.uint8)
return [synthesis.astype(np.uint8), depth_pred.astype(np.uint8), vis_source, mask_3]
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# MimicBrush: Zero-shot Image Editing with Reference Imitation ")
with gr.Row():
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
with gr.Accordion("Advanced Option", open=True):
num_samples = 1
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=-30.0, maximum=30.0, value=5.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1)
enable_shape_control = gr.Checkbox(label='Keep the original shape', value=False, interactive = True)
gr.Markdown("### Tutorial")
gr.Markdown("1. Upload the source image and the reference image")
gr.Markdown("2. Select the \"draw button\" to mask the to-edit region on the source image ")
gr.Markdown("3. Click generate ")
gr.Markdown("#### You shoud click \"keep the original shape\" to conduct texture transfer ")
gr.Markdown("# Upload the source image and reference image")
gr.Markdown("### Tips: you could adjust the brush size")
with gr.Row():
base = gr.ImageEditor( label="Source",
type="pil",
brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"),
layers = False,
interactive=True
)
ref = gr.Image(label="Reference", sources="upload", type="pil", height=512)
run_local_button = gr.Button(value="Run")
with gr.Row():
gr.Examples(
examples=[
[
'./demo_example/005_source.png',
'./demo_example/005_reference.png',
0
],
[
'./demo_example/004_source.png',
'./demo_example/004_reference.png',
0
],
[
'./demo_example/000_source.png',
'./demo_example/000_reference.png',
0
],
[
'./demo_example/003_source.png',
'./demo_example/003_reference.png',
0
],
[
'./demo_example/006_source.png',
'./demo_example/006_reference.png',
0
],
[
'./demo_example/001_source.png',
'./demo_example/001_reference.png',
1
],
[
'./demo_example/002_source.png',
'./demo_example/002_reference.png',
1
],
[
'./demo_example/007_source.png',
'./demo_example/007_reference.png',
1
],
],
inputs=[
base,
ref,
enable_shape_control
],
cache_examples=False,
examples_per_page=100)
run_local_button.click(fn=run_local,
inputs=[base,
ref,
ddim_steps,
scale,
seed,
enable_shape_control
],
outputs=[baseline_gallery]
)
demo.launch(server_name="0.0.0.0") |