File size: 4,060 Bytes
3210048
 
 
 
 
 
 
 
 
75bbc61
 
3210048
 
 
78002e6
3210048
9d12334
78002e6
9d12334
3cfa4cc
 
 
 
 
 
 
 
 
3210048
 
 
3cfa4cc
9d12334
3210048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099273d
 
3210048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
099273d
3210048
78002e6
485f254
3210048
 
 
 
 
 
 
 
 
 
 
378d4e8
3210048
 
378d4e8
 
7ddec05
378d4e8
3210048
78002e6
 
3210048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78002e6
3210048
78002e6
 
 
3210048
 
78002e6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
import os 
from PIL import Image
import torch
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from transformer_flux import FluxTransformer2DModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
import spaces 
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX'))

check_min_version("0.30.2")
transformer = FluxTransformer2DModel.from_pretrained(
        "black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
    )


# Build pipeline
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    controlnet=controlnet,
    transformer=transformer,
    torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)


MARKDOWN = """
# FLUX.1-dev-Inpainting-Model-Beta-GPU 🔥
Model by alimama-creative
"""

@spaces.GPU()
def process(input_image_editor,
            prompt,
            negative_prompt,
            controlnet_conditioning_scale,
            guidance_scale,
            seed,
            num_inference_steps,
            true_guidance_scale            
            ):
    image = input_image_editor['background']
    mask = input_image_editor['layers'][0]
    size = (768, 768)
    image_or = image.copy()
    
    image = image.convert("RGB").resize(size)
    mask = mask.convert("RGB").resize(size)
    generator = torch.Generator(device="cuda").manual_seed(seed)
    result = pipe(
    prompt=prompt,
    height=size[1],
    width=size[0],
    control_image=image,
    control_mask=mask,
    num_inference_steps=num_inference_steps,
    generator=generator,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    guidance_scale=guidance_scale,
    negative_prompt=negative_prompt,
    true_guidance_scale=true_guidance_scale
    ).images[0]

    return result.resize((image_or.size[:2]))


with gr.Blocks(css=".gradio-container {background-color: #d1d5db;}") as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image_editor_component = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload", "webcam"],
                image_mode='RGB',
                layers=False,
                brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))

            prompt = gr.Textbox(lines=2, placeholder="Enter prompt here...")
            negative_prompt = gr.Textbox(lines=2, placeholder="Enter negative_prompt here...")
            controlnet_conditioning_scale = gr.Slider(minimum=0, step=0.01, maximum=1, value=0.9, label="controlnet_conditioning_scale")
            guidance_scale = gr.Slider(minimum=1, step=0.5, maximum=10, value=3.5, label="Image to generate")
            seed  = gr.Slider(minimum=0, step=1, maximum=10000000, value=124, label="Seed Value")
            num_inference_steps = gr.Slider(minimum=1, step=1, maximum=30, value=24, label="num_inference_steps")
            true_guidance_scale = gr.Slider(minimum=1, step=1, maximum=10, value=3.5, label="true_guidance_scale")
            

            
            submit_button_component = gr.Button(
                    value='Submit', variant='primary', scale=0)
            
        with gr.Column():
            output_image_component = gr.Image(
                type='pil', image_mode='RGB', label='Generated image', format="png")

    submit_button_component.click(
        fn=process,
        inputs=[
            input_image_editor_component,
            prompt,
            negative_prompt,
            controlnet_conditioning_scale,
            guidance_scale,
            seed,
            num_inference_steps,
            true_guidance_scale  

        ],
        outputs=[
            output_image_component,
        ]
    )



demo.launch(debug=False, show_error=True,share=True)