File size: 4,289 Bytes
4a11192
 
a63a8f0
 
 
 
 
 
 
df2d67a
 
 
 
a63a8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a97ca3
 
7980d67
 
a63a8f0
 
 
 
f6a1585
 
a63a8f0
f6a1585
 
 
 
a63a8f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a1585
a63a8f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr

import gradio as gr
import os
import requests
import json
from huggingface_hub import login


# myip = os.environ["0.0.0.0"]
# myport = os.environ["80"]
myip = "0.0.0.0"
myport=80

is_spaces = True if "SPACE_ID" in os.environ else False

is_shared_ui = False


def excute_udiff(diffusion_model_id, concept, attacker):
    print(f"my IP is {myip}, my port is {myport}")
    print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, attacker: {attacker}")
    result = requests.post('http://{}:{}/udiff'.format(myip, myport), json={"diffusion_model_id": diffusion_model_id, "concept": concept, "attacker": attacker})
    result = result.text[1:-1]
    
    return result


css = '''
    .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
    .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
    #component-4, #component-3, #component-10{min-height: 0}
    .duplicate-button img{margin: 0}
    #img_1, #img_2, #img_3, #img_4{height:15rem}
    #mdStyle{font-size: 0.7rem}
    #titleCenter {text-align:center}
'''


with gr.Blocks(css=css) as demo:
    gr.Markdown("# Demo of UnlearnDiffAtk.")
    gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).")
#     gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack), 
# check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).")
    gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.")

    with gr.Row() as udiff:
        with gr.Column():
            # gr.Markdown("Please upload your model id.")
            diffusion_model_id = gr.Textbox(label='diffusion_model_id')
            concept = gr.Textbox(label='concept')
            attacker = gr.Textbox(label='attacker')

            start_button = gr.Button("Attack!")

        with gr.Column():
            result = gr.Textbox(label="unsafe prompt")

    with gr.Column():
        gr.Examples(examples=[
            ["CompVis/stable-diffusion-v1-4", "nudity", "text_grad"]
        ], inputs=[diffusion_model_id, concept, attacker])

    start_button.click(fn=excute_udiff, inputs=[diffusion_model_id, concept, attacker], outputs=result, api_name="udiff")


# demo.queue(default_enabled=False, api_open=False, max_size=5).launch(debug=True, show_api=False)
demo.queue().launch(server_name='0.0.0.0')

# with gr.Blocks() as demo:
#     with gr.Row():
#         prompt = gr.Textbox(label='Input Prompt')
#     with gr.Row():
#         shown_columns_1 = gr.CheckboxGroup(
#             choices=["Church","Parachute","Tench", "Garbage Truck"],
#             label="Undersirable Objects",
#             elem_id="column-object",
#             interactive=True,
#         )
#     with gr.Row():
#         shown_columns_2 = gr.CheckboxGroup(
#             choices=["Van Gogh"],
#             label="Undersirable Styles",
#             elem_id="column-style",
#             interactive=True,
#         )
#     with gr.Row():
#         shown_columns_3 = gr.CheckboxGroup(
#             choices=["Violence","Illegal Activity","Nudity"],
#             label="Undersirable Concepts (Outputs that may be offensive in nature)",
#             elem_id="column-select",
#             interactive=True,
#         )
#     with gr.Row():
#         with gr.Column(scale=1, min_width=300):
#             img1 = gr.Image("images/cheetah.jpg",label="Unlearning")
#         with gr.Column(scale=1, min_width=300):
#             img2 = gr.Image("images/cheetah.jpg",label="Attacking")

#     with gr.Row():
#             # gr.Markdown("Please upload your model id.")
#             diffusion_model_id = gr.Textbox(label='diffusion_model_id')
#             shown_columns_4 = gr.Slider(
#                 1, 100, value=40, 
#                 step=1, label="Attacking Steps", info="Choose between 1 and 100",
#                 interactive=True,)

#             # concept = gr.Textbox(label='concept')
#             attacker = gr.Textbox(label='attacker')

#             start_button = gr.Button("Attack!")


# demo.launch()