Spaces:
Sleeping
Sleeping
File size: 5,703 Bytes
4a11192 a63a8f0 df2d67a a63a8f0 16dcabb a63a8f0 16dcabb a63a8f0 a9eb656 fb3682d f9a7813 a63a8f0 f6a1585 fb3682d f6a1585 fb3682d f6a1585 e8f35b2 c08838c e8f35b2 c08838c a7ccaf0 c08838c a7ccaf0 be74510 a7ccaf0 c08838c e8f35b2 a63a8f0 e8f35b2 a63a8f0 f6a1585 a63a8f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import gradio as gr
import os
import requests
import json
from huggingface_hub import login
# myip = os.environ["0.0.0.0"]
# myport = os.environ["80"]
myip = "0.0.0.0"
myport=80
is_spaces = True if "SPACE_ID" in os.environ else False
is_shared_ui = False
from css_html_js import custom_css
from about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
def excute_udiff(diffusion_model_id, concept, attacker):
print(f"my IP is {myip}, my port is {myport}")
print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, attacker: {attacker}")
result = requests.post('http://{}:{}/udiff'.format(myip, myport), json={"diffusion_model_id": diffusion_model_id, "concept": concept, "attacker": attacker})
result = result.text[1:-1]
return result
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
#img_1, #img_2, #img_3, #img_4{height:15rem}
#mdStyle{font-size: 0.7rem}
#titleCenter {text-align:center}
'''
with gr.Blocks(css=custom_css) as demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# gr.Markdown("# Demo of UnlearnDiffAtk.")
# gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).")
# # gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack),
# # check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).")
# gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.")
with gr.Row() as udiff:
with gr.Row():
drop = gr.Dropdown(["Object-Church", "Object-Parachute", "Object-Garbage","Style-Van Gogh",
"Concept-Nudity", "Concept-Violence", "Illegal Activity", "None"],
label="Unlearning undesirable")
with gr.Column():
# gr.Markdown("Please upload your model id.")
drop_model = gr.Dropdown(["ESD", "FMN", "AC","UCE", "SLD"],
label="Unlearned DM")
# diffusion_model_T = gr.Textbox(label='diffusion_model_id')
# concept = gr.Textbox(label='concept')
# attacker = gr.Textbox(label='attacker')
# start_button = gr.Button("Attack!")
with gr.Column():
shown_columns_step = gr.Slider(
0, 100, value=40,
step=1, label="Attack Steps", info="Choose between 0 and 100",
interactive=True,)
with gr.Row() as attack:
with gr.Column(scale=4, min_width=320):
text_input = gr.Textbox(label="Input Prompt")
img1 = gr.Image("images/cheetah.jpg",label="Image")
with gr.Column(scale=1):
start_button = gr.Button("UnlearnDiffAtk!",size='lg',min_width=10)
with gr.Column(scale=4,min_width=320):
text_ouput = gr.Textbox(label="Prompt Genetated by UnlearnDiffAtk")
img2 = gr.Image("images/cheetah.jpg",label="After Defense")
# with gr.Column():
# gr.Examples(examples=[
# ["CompVis/stable-diffusion-v1-4", "nudity", "text_grad"]
# ], inputs=[diffusion_model_id, concept, attacker])
# start_button.click(fn=excute_udiff, inputs=[diffusion_model_id, concept, attacker], outputs=result, api_name="udiff")
# demo.queue(default_enabled=False, api_open=False, max_size=5).launch(debug=True, show_api=False)
demo.queue().launch(server_name='0.0.0.0')
# with gr.Blocks() as demo:
# with gr.Row():
# prompt = gr.Textbox(label='Input Prompt')
# with gr.Row():
# shown_columns_1 = gr.CheckboxGroup(
# choices=["Church","Parachute","Tench", "Garbage Truck"],
# label="Undersirable Objects",
# elem_id="column-object",
# interactive=True,
# )
# with gr.Row():
# shown_columns_2 = gr.CheckboxGroup(
# choices=["Van Gogh"],
# label="Undersirable Styles",
# elem_id="column-style",
# interactive=True,
# )
# with gr.Row():
# shown_columns_3 = gr.CheckboxGroup(
# choices=["Violence","Illegal Activity","Nudity"],
# label="Undersirable Concepts (Outputs that may be offensive in nature)",
# elem_id="column-select",
# interactive=True,
# )
# with gr.Row():
# with gr.Column(scale=1, min_width=300):
# img1 = gr.Image("images/cheetah.jpg",label="Unlearning")
# with gr.Column(scale=1, min_width=300):
# img2 = gr.Image("images/cheetah.jpg",label="Attacking")
# with gr.Row():
# # gr.Markdown("Please upload your model id.")
# diffusion_model_id = gr.Textbox(label='diffusion_model_id')
# shown_columns_4 = gr.Slider(
# 1, 100, value=40,
# step=1, label="Attacking Steps", info="Choose between 1 and 100",
# interactive=True,)
# # concept = gr.Textbox(label='concept')
# attacker = gr.Textbox(label='attacker')
# start_button = gr.Button("Attack!")
# demo.launch() |