SD_Offense / app.py
Kaixuanliu's picture
Update app.py
6394260 verified
raw
history blame
5.97 kB
import gradio as gr
import os
import requests
import json
from huggingface_hub import login
# myip = os.environ["34.221.7.12"]
# myport = os.environ["80"]
myip = "34.221.7.12"
myport=80
is_spaces = True if "SPACE_ID" in os.environ else False
is_shared_ui = False
from css_html_js import custom_css
from about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
def excute_udiff(diffusion_model_id, concept, step):
print(f"my IP is {myip}, my port is {myport}")
print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, attacker: {attacker}")
result = requests.post('http://{}:{}/udiff'.format(myip, myport), json={"diffusion_model_id": diffusion_model_id, "concept": concept, "step": step})
result = result.text[1:-1]
return result
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
#img_1, #img_2, #img_3, #img_4{height:15rem}
#mdStyle{font-size: 0.7rem}
#titleCenter {text-align:center}
'''
with gr.Blocks(css=custom_css) as demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# gr.Markdown("# Demo of UnlearnDiffAtk.")
# gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).")
# # gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack),
# # check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).")
# gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.")
with gr.Row() as udiff:
with gr.Row():
drop = gr.Dropdown(["Object-Church", "Object-Parachute", "Object-Garbage","Style-Van Gogh",
"Concept-Nudity", "Concept-Violence", "Concept-Illegal Activity", "None"],
label="Unlearning undesirable")
with gr.Column():
# gr.Markdown("Please upload your model id.")
drop_model = gr.Dropdown(["Erased Stable Diffusion(ESD)", "Forget-me-not(FMN)", "Ablating concepts(AC)","Unified Concept Editing(UCE)", "(Safe Latent Diffusion)SLD"],
label="Unlearned DMs")
# diffusion_model_T = gr.Textbox(label='diffusion_model_id')
# concept = gr.Textbox(label='concept')
# attacker = gr.Textbox(label='attacker')
# start_button = gr.Button("Attack!")
with gr.Column():
shown_columns_step = gr.Slider(
0, 100, value=40,
step=1, label="Attack Steps", info="Choose between 0 and 100",
interactive=True,)
with gr.Row() as attack:
with gr.Column(min_width=260):
text_input = gr.Textbox(label="Input Prompt")
img1 = gr.Image("images/cheetah.jpg",label="Image Generated by Input Prompt",width=260,show_share_button=False,show_download_button=False)
with gr.Column():
start_button = gr.Button("UnlearnDiffAtk!",size='lg')
with gr.Column(min_width=260):
text_ouput = gr.Textbox(label="Prompt Genetated by UnlearnDiffAtk")
img2 = gr.Image("images/cheetah.jpg",label="Image Gnerated by Prompt of UnlearnDiffAtk",width=260,show_share_button=False,show_download_button=False)
# with gr.Column():
# gr.Examples(examples=[
# ["CompVis/stable-diffusion-v1-4", "nudity", "text_grad"]
# ], inputs=[diffusion_model_id, concept, attacker])
start_button.click(fn=excute_udiff, inputs=[drop_model, drop, shown_columns_step], outputs=[text_ouput], api_name="udiff")
# demo.queue(default_enabled=False, api_open=False, max_size=5).launch(debug=True, show_api=False)
demo.queue().launch(server_name='0.0.0.0',share=True)
# with gr.Blocks() as demo:
# with gr.Row():
# prompt = gr.Textbox(label='Input Prompt')
# with gr.Row():
# shown_columns_1 = gr.CheckboxGroup(
# choices=["Church","Parachute","Tench", "Garbage Truck"],
# label="Undersirable Objects",
# elem_id="column-object",
# interactive=True,
# )
# with gr.Row():
# shown_columns_2 = gr.CheckboxGroup(
# choices=["Van Gogh"],
# label="Undersirable Styles",
# elem_id="column-style",
# interactive=True,
# )
# with gr.Row():
# shown_columns_3 = gr.CheckboxGroup(
# choices=["Violence","Illegal Activity","Nudity"],
# label="Undersirable Concepts (Outputs that may be offensive in nature)",
# elem_id="column-select",
# interactive=True,
# )
# with gr.Row():
# with gr.Column(scale=1, min_width=300):
# img1 = gr.Image("images/cheetah.jpg",label="Unlearning")
# with gr.Column(scale=1, min_width=300):
# img2 = gr.Image("images/cheetah.jpg",label="Attacking")
# with gr.Row():
# # gr.Markdown("Please upload your model id.")
# diffusion_model_id = gr.Textbox(label='diffusion_model_id')
# shown_columns_4 = gr.Slider(
# 1, 100, value=40,
# step=1, label="Attacking Steps", info="Choose between 1 and 100",
# interactive=True,)
# # concept = gr.Textbox(label='concept')
# attacker = gr.Textbox(label='attacker')
# start_button = gr.Button("Attack!")
# demo.launch()