Spaces:
Runtime error
Runtime error
xinfyxinfy
commited on
Commit
·
8de2029
1
Parent(s):
d15e62f
Update app.py
Browse files
app.py
CHANGED
@@ -75,7 +75,7 @@ elif task == "TCR\u03B2-Peptide":
|
|
75 |
|
76 |
|
77 |
##################### ML predict function
|
78 |
-
|
79 |
def predict_on_batch_output(dataset,shorttask,group):
|
80 |
|
81 |
if dataset == 'MCPAS':
|
@@ -92,6 +92,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
92 |
model = load_model('models/mcpas/bestmodel_alphabetapeptide.hdf5',compile=False)
|
93 |
#predict_on_batch
|
94 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np])
|
|
|
95 |
elif dataset=='mcpas' and shorttask=='abpm':
|
96 |
#load data
|
97 |
alpha, beta, pep, mhc = group
|
@@ -100,6 +101,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
100 |
model = load_model('models/mcpas/bestmodel_alphabetaptptidemhc.hdf5',compile=False)
|
101 |
#predict_on_batch
|
102 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np, mhc_np])
|
|
|
103 |
elif dataset=='mcpas' and shorttask=='ap':
|
104 |
#load data
|
105 |
alpha, pep, = group
|
@@ -108,6 +110,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
108 |
model = load_model('models/mcpas/bestmodel_alphapeptide.hdf5',compile=False)
|
109 |
#predict_on_batch
|
110 |
output = model.predict_on_batch([alpha_np,pep_np])
|
|
|
111 |
elif dataset=='mcpas' and shorttask=='bp':
|
112 |
#load data
|
113 |
beta, pep = group
|
@@ -116,6 +119,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
116 |
model = load_model('models/mcpas/bestmodel_betapeptide.hdf5',compile=False)
|
117 |
#predict_on_batch
|
118 |
output = model.predict_on_batch([beta_np, pep_np])
|
|
|
119 |
elif dataset=='mcpas' and shorttask=='apm':
|
120 |
#load data
|
121 |
alpha, pep, mhc = group
|
@@ -124,6 +128,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
124 |
model = load_model('models/mcpas/bestmodel_alphapeptidemhc.hdf5',compile=False)
|
125 |
#predict_on_batch
|
126 |
output = model.predict_on_batch([alpha_np, pep_np, mhc_np])
|
|
|
127 |
elif dataset=='mcpas' and shorttask=='bpm':
|
128 |
#load data
|
129 |
beta, pep, mhc = group
|
@@ -132,6 +137,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
132 |
model = load_model('models/mcpas/bestmodel_betapeptidemhc.hdf5',compile=False)
|
133 |
#predict_on_batch
|
134 |
output = model.predict_on_batch([beta_np, pep_np, mhc_np])
|
|
|
135 |
elif dataset=='vdjdb' and shorttask=='abp':
|
136 |
#load data
|
137 |
alpha, beta, pep = group
|
@@ -140,6 +146,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
140 |
model = load_model('models/vdjdb/bestmodel_alphabetapeptide.hdf5',compile=False)
|
141 |
#predict_on_batch
|
142 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np])
|
|
|
143 |
elif dataset=='vdjdb' and shorttask=='abpm':
|
144 |
#load data
|
145 |
alpha, beta, pep, mhc = group
|
@@ -148,7 +155,8 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
148 |
model = load_model('models/vdjdb/bestmodel_alphabetapeptidemhc.hdf5',compile=False)
|
149 |
#predict_on_batch
|
150 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np, mhc_np])
|
151 |
-
|
|
|
152 |
#load data
|
153 |
alpha, pep, = group
|
154 |
alpha_np, pep_np, = np.load(alpha), np.load(pep)
|
@@ -156,6 +164,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
156 |
model = load_model('models/vdjdb/bestmodel_alphapeptide.hdf5',compile=False)
|
157 |
#predict_on_batch
|
158 |
output = model.predict_on_batch([alpha_np, pep_np])
|
|
|
159 |
elif dataset=='vdjdb' and shorttask=='bp':
|
160 |
#load data
|
161 |
beta, pep = group
|
@@ -164,6 +173,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
164 |
model = load_model('models/vdjdb/bestmodel_betapeptide.hdf5',compile=False)
|
165 |
#predict_on_batch
|
166 |
output = model.predict_on_batch([beta_np, pep_np])
|
|
|
167 |
elif dataset=='vdjdb' and shorttask=='apm':
|
168 |
#load data
|
169 |
alpha, pep, mhc = group
|
@@ -172,6 +182,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
172 |
model = load_model('models/vdjdb/bestmodel_alphapeptidemhc.hdf5',compile=False)
|
173 |
#predict_on_batch
|
174 |
output = model.predict_on_batch([alpha_np, pep_np, mhc_np])
|
|
|
175 |
elif dataset=='vdjdb' and shorttask=='bpm':
|
176 |
#load data
|
177 |
beta, pep, mhc = group
|
@@ -186,7 +197,7 @@ def predict_on_batch_output(dataset,shorttask,group):
|
|
186 |
val = np.squeeze(output)
|
187 |
return val
|
188 |
|
189 |
-
|
190 |
def convert_df(df):
|
191 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
192 |
return df.to_csv().encode('utf-8')
|
@@ -196,7 +207,9 @@ def convert_df(df):
|
|
196 |
if st.button('Submit'):
|
197 |
# with st.spinner('Wait for it...'):
|
198 |
# time.sleep(0.5)
|
199 |
-
# res = predict_on_batch_output(dataset,shorttask,group)
|
|
|
|
|
200 |
# st.write("Binding Probabilities")
|
201 |
# st.dataframe((np.round(res, 4)))
|
202 |
# csv = convert_df(pd.DataFrame(np.round(res, 4), columns=['output']))
|
@@ -206,19 +219,24 @@ if st.button('Submit'):
|
|
206 |
with st.spinner('Calculating ...'):
|
207 |
time.sleep(0.5)
|
208 |
st.write("Binding Probabilities")
|
209 |
-
st.dataframe(
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
211 |
st.download_button(label="Download Predictions",data=csv,file_name='tcresm_predictions.csv', mime='text/csv')
|
212 |
except:
|
213 |
-
st.error('Please ensure you have uploaded the files
|
214 |
|
215 |
|
216 |
|
217 |
-
|
218 |
-
#
|
219 |
-
#
|
220 |
-
|
221 |
|
222 |
|
223 |
|
224 |
-
st.caption('Developed By: Shashank Yadav : shashank[at]arizona.edu', unsafe_allow_html=True)
|
|
|
75 |
|
76 |
|
77 |
##################### ML predict function
|
78 |
+
@st.cache_data
|
79 |
def predict_on_batch_output(dataset,shorttask,group):
|
80 |
|
81 |
if dataset == 'MCPAS':
|
|
|
92 |
model = load_model('models/mcpas/bestmodel_alphabetapeptide.hdf5',compile=False)
|
93 |
#predict_on_batch
|
94 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np])
|
95 |
+
|
96 |
elif dataset=='mcpas' and shorttask=='abpm':
|
97 |
#load data
|
98 |
alpha, beta, pep, mhc = group
|
|
|
101 |
model = load_model('models/mcpas/bestmodel_alphabetaptptidemhc.hdf5',compile=False)
|
102 |
#predict_on_batch
|
103 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np, mhc_np])
|
104 |
+
|
105 |
elif dataset=='mcpas' and shorttask=='ap':
|
106 |
#load data
|
107 |
alpha, pep, = group
|
|
|
110 |
model = load_model('models/mcpas/bestmodel_alphapeptide.hdf5',compile=False)
|
111 |
#predict_on_batch
|
112 |
output = model.predict_on_batch([alpha_np,pep_np])
|
113 |
+
|
114 |
elif dataset=='mcpas' and shorttask=='bp':
|
115 |
#load data
|
116 |
beta, pep = group
|
|
|
119 |
model = load_model('models/mcpas/bestmodel_betapeptide.hdf5',compile=False)
|
120 |
#predict_on_batch
|
121 |
output = model.predict_on_batch([beta_np, pep_np])
|
122 |
+
|
123 |
elif dataset=='mcpas' and shorttask=='apm':
|
124 |
#load data
|
125 |
alpha, pep, mhc = group
|
|
|
128 |
model = load_model('models/mcpas/bestmodel_alphapeptidemhc.hdf5',compile=False)
|
129 |
#predict_on_batch
|
130 |
output = model.predict_on_batch([alpha_np, pep_np, mhc_np])
|
131 |
+
|
132 |
elif dataset=='mcpas' and shorttask=='bpm':
|
133 |
#load data
|
134 |
beta, pep, mhc = group
|
|
|
137 |
model = load_model('models/mcpas/bestmodel_betapeptidemhc.hdf5',compile=False)
|
138 |
#predict_on_batch
|
139 |
output = model.predict_on_batch([beta_np, pep_np, mhc_np])
|
140 |
+
|
141 |
elif dataset=='vdjdb' and shorttask=='abp':
|
142 |
#load data
|
143 |
alpha, beta, pep = group
|
|
|
146 |
model = load_model('models/vdjdb/bestmodel_alphabetapeptide.hdf5',compile=False)
|
147 |
#predict_on_batch
|
148 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np])
|
149 |
+
|
150 |
elif dataset=='vdjdb' and shorttask=='abpm':
|
151 |
#load data
|
152 |
alpha, beta, pep, mhc = group
|
|
|
155 |
model = load_model('models/vdjdb/bestmodel_alphabetapeptidemhc.hdf5',compile=False)
|
156 |
#predict_on_batch
|
157 |
output = model.predict_on_batch([alpha_np, beta_np, pep_np, mhc_np])
|
158 |
+
|
159 |
+
elif dataset=='vdjdb' and shorttask=='ap':
|
160 |
#load data
|
161 |
alpha, pep, = group
|
162 |
alpha_np, pep_np, = np.load(alpha), np.load(pep)
|
|
|
164 |
model = load_model('models/vdjdb/bestmodel_alphapeptide.hdf5',compile=False)
|
165 |
#predict_on_batch
|
166 |
output = model.predict_on_batch([alpha_np, pep_np])
|
167 |
+
|
168 |
elif dataset=='vdjdb' and shorttask=='bp':
|
169 |
#load data
|
170 |
beta, pep = group
|
|
|
173 |
model = load_model('models/vdjdb/bestmodel_betapeptide.hdf5',compile=False)
|
174 |
#predict_on_batch
|
175 |
output = model.predict_on_batch([beta_np, pep_np])
|
176 |
+
|
177 |
elif dataset=='vdjdb' and shorttask=='apm':
|
178 |
#load data
|
179 |
alpha, pep, mhc = group
|
|
|
182 |
model = load_model('models/vdjdb/bestmodel_alphapeptidemhc.hdf5',compile=False)
|
183 |
#predict_on_batch
|
184 |
output = model.predict_on_batch([alpha_np, pep_np, mhc_np])
|
185 |
+
|
186 |
elif dataset=='vdjdb' and shorttask=='bpm':
|
187 |
#load data
|
188 |
beta, pep, mhc = group
|
|
|
197 |
val = np.squeeze(output)
|
198 |
return val
|
199 |
|
200 |
+
@st.cache_data
|
201 |
def convert_df(df):
|
202 |
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
203 |
return df.to_csv().encode('utf-8')
|
|
|
207 |
if st.button('Submit'):
|
208 |
# with st.spinner('Wait for it...'):
|
209 |
# time.sleep(0.5)
|
210 |
+
# res = predict_on_batch_output(dataset,shorttask,group).flatten()
|
211 |
+
# # res = predict_output(dataset,shorttask,group)
|
212 |
+
# print(type(res), res.shape)
|
213 |
# st.write("Binding Probabilities")
|
214 |
# st.dataframe((np.round(res, 4)))
|
215 |
# csv = convert_df(pd.DataFrame(np.round(res, 4), columns=['output']))
|
|
|
219 |
with st.spinner('Calculating ...'):
|
220 |
time.sleep(0.5)
|
221 |
st.write("Binding Probabilities")
|
222 |
+
# st.dataframe(['Sample Number','Output'], use_container_width=500, height=500)
|
223 |
+
val_df = pd.DataFrame({'Sample Number': [item+1 for item in range(0,res.shape[0])], 'Binding Probability': res.tolist()})
|
224 |
+
val_df = val_df.set_index(['Sample Number'])
|
225 |
+
# st.dataframe(np.round(res, 4), use_container_width=500, height=500)
|
226 |
+
st.dataframe(val_df, use_container_width=500, height=500)
|
227 |
+
# csv = convert_df(pd.DataFrame(np.round(res, 4), columns=['output']))
|
228 |
+
csv = convert_df(val_df)
|
229 |
st.download_button(label="Download Predictions",data=csv,file_name='tcresm_predictions.csv', mime='text/csv')
|
230 |
except:
|
231 |
+
st.error('Please ensure you have uploaded the files before pressing the Submit button', icon="🚨")
|
232 |
|
233 |
|
234 |
|
235 |
+
if st.button("Clear All"):
|
236 |
+
# Clear values from *all* all in-memory and on-disk data caches:
|
237 |
+
# i.e. clear values from both square and cube
|
238 |
+
st.cache_data.clear()
|
239 |
|
240 |
|
241 |
|
242 |
+
st.caption('Developed By: Shashank Yadav : shashank[at]arizona.edu', unsafe_allow_html=True)
|