Spaces:
Running
on
T4
Running
on
T4
import numpy as np | |
import matplotlib.pyplot as plt | |
def show_mask(mask, ax, random_color=False): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
ax.imshow(mask_image) | |
def show_points(coords, labels, ax, marker_size=375): | |
pos_points = coords[labels==1] | |
neg_points = coords[labels==0] | |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
def show_box(box, ax): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
import sys | |
sys.path.append("..") | |
from tinysam import sam_model_registry, SamPredictor | |
model_type = "vit_t" | |
sam = sam_model_registry[model_type](checkpoint="./weights/tinysam.pth") | |
predictor = SamPredictor(sam) | |
import cv2 | |
image = cv2.imread('fig/picture1.jpg') | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
predictor.set_image(image) | |
input_point = np.array([[400, 400]]) | |
input_label = np.array([1]) | |
masks, scores, logits = predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
) | |
plt.figure(figsize=(10,10)) | |
plt.imshow(image) | |
show_mask(masks[scores.argmax(),:,:], plt.gca()) | |
show_points(input_point, input_label, plt.gca()) | |
plt.axis('off') | |
plt.savefig("test.png") |