|
|
|
|
|
|
|
from importlib_resources import files |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from transformers import CLIPModel, CLIPProcessor |
|
from PIL import Image |
|
ASSETS_PATH = files("assets") |
|
|
|
|
|
class MLPDiff(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.layers = nn.Sequential( |
|
nn.Linear(768, 1024), |
|
nn.Dropout(0.2), |
|
nn.Linear(1024, 128), |
|
nn.Dropout(0.2), |
|
nn.Linear(128, 64), |
|
nn.Dropout(0.1), |
|
nn.Linear(64, 16), |
|
nn.Linear(16, 1), |
|
) |
|
|
|
|
|
def forward(self, embed): |
|
return self.layers(embed) |
|
|
|
|
|
class AestheticScorerDiff(torch.nn.Module): |
|
def __init__(self, dtype): |
|
super().__init__() |
|
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") |
|
self.mlp = MLPDiff() |
|
state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth")) |
|
self.mlp.load_state_dict(state_dict) |
|
self.dtype = dtype |
|
self.eval() |
|
|
|
def __call__(self, images): |
|
device = next(self.parameters()).device |
|
embed = self.clip.get_image_features(pixel_values=images) |
|
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True) |
|
return self.mlp(embed).squeeze(1) |
|
|