Update app.py
Browse files
app.py
CHANGED
@@ -3,36 +3,35 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
pipe =
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 2048
|
16 |
|
17 |
@spaces.GPU(duration=190)
|
18 |
-
def infer(prompt, seed=42, randomize_seed=False, width=
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
21 |
generator = torch.Generator().manual_seed(seed)
|
22 |
image = pipe(
|
23 |
-
prompt
|
24 |
-
width
|
25 |
-
height
|
26 |
-
num_inference_steps
|
27 |
-
generator
|
28 |
guidance_scale=guidance_scale
|
29 |
).images[0]
|
30 |
return image, seed
|
31 |
-
|
32 |
examples = [
|
33 |
-
"
|
34 |
-
"a
|
35 |
-
"
|
36 |
]
|
37 |
|
38 |
css="""
|
@@ -45,9 +44,9 @@ css="""
|
|
45 |
with gr.Blocks(css=css) as demo:
|
46 |
|
47 |
with gr.Column(elem_id="col-container"):
|
48 |
-
gr.Markdown(f"""#
|
49 |
-
12B param
|
50 |
-
[[non-commercial license](https://huggingface.co/
|
51 |
""")
|
52 |
|
53 |
with gr.Row():
|
@@ -83,7 +82,7 @@ with gr.Blocks(css=css) as demo:
|
|
83 |
minimum=256,
|
84 |
maximum=MAX_IMAGE_SIZE,
|
85 |
step=32,
|
86 |
-
value=
|
87 |
)
|
88 |
|
89 |
height = gr.Slider(
|
@@ -109,22 +108,22 @@ with gr.Blocks(css=css) as demo:
|
|
109 |
minimum=1,
|
110 |
maximum=50,
|
111 |
step=1,
|
112 |
-
value=
|
113 |
)
|
114 |
|
115 |
gr.Examples(
|
116 |
-
examples
|
117 |
-
fn
|
118 |
-
inputs
|
119 |
-
outputs
|
120 |
cache_examples="lazy"
|
121 |
)
|
122 |
|
123 |
gr.on(
|
124 |
triggers=[run_button.click, prompt.submit],
|
125 |
-
fn
|
126 |
-
inputs
|
127 |
-
outputs
|
128 |
)
|
129 |
|
130 |
-
demo.launch()
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
+
from diffusers import FluxPipeline
|
|
|
7 |
|
8 |
dtype = torch.bfloat16
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
pipe = FluxPipeline.from_pretrained("Shakker-Labs/AWPortrait-FL", torch_dtype=torch.bfloat16).to(device)
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
@spaces.GPU(duration=190)
|
17 |
+
def infer(prompt, seed=42, randomize_seed=False, width=768, height=1024, guidance_scale=3.5, num_inference_steps=24, progress=gr.Progress(track_tqdm=True)):
|
18 |
if randomize_seed:
|
19 |
seed = random.randint(0, MAX_SEED)
|
20 |
generator = torch.Generator().manual_seed(seed)
|
21 |
image = pipe(
|
22 |
+
prompt=prompt,
|
23 |
+
width=width,
|
24 |
+
height=height,
|
25 |
+
num_inference_steps=num_inference_steps,
|
26 |
+
generator=generator,
|
27 |
guidance_scale=guidance_scale
|
28 |
).images[0]
|
29 |
return image, seed
|
30 |
+
|
31 |
examples = [
|
32 |
+
"close up portrait, Amidst the interplay of light and shadows in a photography studio,a soft spotlight traces the contours of a face,highlighting a figure clad in a sleek black turtleneck...",
|
33 |
+
"a cinematic portrait of an elegant elderly man with a wise expression...",
|
34 |
+
"a dramatic close-up shot of a warrior princess with fierce eyes..."
|
35 |
]
|
36 |
|
37 |
css="""
|
|
|
44 |
with gr.Blocks(css=css) as demo:
|
45 |
|
46 |
with gr.Column(elem_id="col-container"):
|
47 |
+
gr.Markdown(f"""# AWPortrait-FL
|
48 |
+
12B param flow transformer guidance-distilled from [AWPortrait-FL](https://huggingface.co/Shakker-Labs/AWPortrait-FL)
|
49 |
+
[[non-commercial license](https://huggingface.co/Shakker-Labs/AWPortrait-FL/blob/main/LICENSE.md)]
|
50 |
""")
|
51 |
|
52 |
with gr.Row():
|
|
|
82 |
minimum=256,
|
83 |
maximum=MAX_IMAGE_SIZE,
|
84 |
step=32,
|
85 |
+
value=768,
|
86 |
)
|
87 |
|
88 |
height = gr.Slider(
|
|
|
108 |
minimum=1,
|
109 |
maximum=50,
|
110 |
step=1,
|
111 |
+
value=24,
|
112 |
)
|
113 |
|
114 |
gr.Examples(
|
115 |
+
examples=examples,
|
116 |
+
fn=infer,
|
117 |
+
inputs=[prompt],
|
118 |
+
outputs=[result, seed],
|
119 |
cache_examples="lazy"
|
120 |
)
|
121 |
|
122 |
gr.on(
|
123 |
triggers=[run_button.click, prompt.submit],
|
124 |
+
fn=infer,
|
125 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
126 |
+
outputs=[result, seed]
|
127 |
)
|
128 |
|
129 |
+
demo.launch()
|