Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import pathlib | |
import gradio as gr | |
from dualstylegan import Model | |
DESCRIPTION = '''# Portrait Style Transfer with <a href="https://github.com/williamyang1991/DualStyleGAN">DualStyleGAN</a> | |
<img id="overview" alt="overview" src="https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images/overview.jpg" /> | |
''' | |
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.dualstylegan" />' | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
return parser.parse_args() | |
def get_style_image_url(style_name: str) -> str: | |
base_url = 'https://raw.githubusercontent.com/williamyang1991/DualStyleGAN/main/doc_images' | |
filenames = { | |
'cartoon': 'cartoon_overview.jpg', | |
'caricature': 'caricature_overview.jpg', | |
'anime': 'anime_overview.jpg', | |
'arcane': 'Reconstruction_arcane_overview.jpg', | |
'comic': 'Reconstruction_comic_overview.jpg', | |
'pixar': 'Reconstruction_pixar_overview.jpg', | |
'slamdunk': 'Reconstruction_slamdunk_overview.jpg', | |
} | |
return f'{base_url}/{filenames[style_name]}' | |
def get_style_image_markdown_text(style_name: str) -> str: | |
url = get_style_image_url(style_name) | |
return f'<img id="style-image" src="{url}" alt="style image">' | |
def update_slider(choice: str) -> dict: | |
max_vals = { | |
'cartoon': 316, | |
'caricature': 198, | |
'anime': 173, | |
'arcane': 99, | |
'comic': 100, | |
'pixar': 121, | |
'slamdunk': 119, | |
} | |
return gr.Slider.update(maximum=max_vals[choice]) | |
def update_style_image(style_name: str) -> dict: | |
text = get_style_image_markdown_text(style_name) | |
return gr.Markdown.update(value=text) | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def set_example_styles(example: list) -> list[dict]: | |
return [ | |
gr.Radio.update(value=example[0]), | |
gr.Slider.update(value=example[1]), | |
] | |
def set_example_weights(example: list) -> list[dict]: | |
return [ | |
gr.Slider.update(value=example[0]), | |
gr.Slider.update(value=example[1]), | |
] | |
def main(): | |
args = parse_args() | |
model = Model(device=args.device) | |
with gr.Blocks(theme=args.theme, css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Box(): | |
gr.Markdown('''## Step 1 (Preprocess Input Image) | |
- Drop an image containing a near-frontal face to the **Input Image**. | |
- If there are multiple faces in the image, hit the Edit button in the upper right corner and crop the input image beforehand. | |
- Hit the **Preprocess** button. | |
- Choose the encoder version. Default is Z+ encoder which has better stylization performance. W+ encoder better reconstructs the input image to preserve more details. | |
- The final result will be based on this **Reconstructed Face**. So, if the reconstructed image is not satisfactory, you may want to change the input image. | |
''') | |
with gr.Row(): | |
encoder_type = gr.Radio(choices=['Z+ encoder (better stylization)', 'W+ encoder (better reconstruction)'], | |
value='Z+ encoder (better stylization)', | |
label='Encoder Type') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(label='Input Image', | |
type='file') | |
with gr.Row(): | |
preprocess_button = gr.Button('Preprocess') | |
with gr.Column(): | |
with gr.Row(): | |
aligned_face = gr.Image(label='Aligned Face', | |
type='numpy', | |
interactive=False) | |
with gr.Column(): | |
reconstructed_face = gr.Image(label='Reconstructed Face', | |
type='numpy') | |
instyle = gr.Variable() | |
with gr.Row(): | |
paths = sorted(pathlib.Path('images').glob('*.jpg')) | |
example_images = gr.Dataset(components=[input_image], | |
samples=[[path.as_posix()] | |
for path in paths]) | |
with gr.Box(): | |
gr.Markdown('''## Step 2 (Select Style Image) | |
- Select **Style Type**. | |
- Select **Style Image Index** from the image table below. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
style_type = gr.Radio(model.style_types, | |
label='Style Type') | |
text = get_style_image_markdown_text('cartoon') | |
style_image = gr.Markdown(value=text) | |
style_index = gr.Slider(0, | |
316, | |
value=26, | |
step=1, | |
label='Style Image Index') | |
with gr.Row(): | |
example_styles = gr.Dataset( | |
components=[style_type, style_index], | |
samples=[ | |
['cartoon', 26], | |
['caricature', 65], | |
['arcane', 63], | |
['pixar', 80], | |
]) | |
with gr.Box(): | |
gr.Markdown('''## Step 3 (Generate Style Transferred Image) | |
- Adjust **Structure Weight** and **Color Weight**. | |
- These are weights for the style image, so the larger the value, the closer the resulting image will be to the style image. | |
- Tips: For W+ encoder, better way of (Structure Only) is to uncheck (Structure Only) and set Color weight to 0. | |
- Hit the **Generate** button. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
structure_weight = gr.Slider(0, | |
1, | |
value=0.6, | |
step=0.1, | |
label='Structure Weight') | |
with gr.Row(): | |
color_weight = gr.Slider(0, | |
1, | |
value=1, | |
step=0.1, | |
label='Color Weight') | |
with gr.Row(): | |
structure_only = gr.Checkbox(label='Structure Only') | |
with gr.Row(): | |
generate_button = gr.Button('Generate') | |
with gr.Column(): | |
result = gr.Image(label='Result') | |
with gr.Row(): | |
example_weights = gr.Dataset( | |
components=[structure_weight, color_weight], | |
samples=[ | |
[0.6, 1.0], | |
[0.3, 1.0], | |
[0.0, 1.0], | |
[1.0, 0.0], | |
]) | |
gr.Markdown(FOOTER) | |
preprocess_button.click(fn=model.detect_and_align_face, | |
inputs=[input_image], | |
outputs=aligned_face) | |
aligned_face.change(fn=model.reconstruct_face, | |
inputs=[aligned_face, encoder_type], | |
outputs=[ | |
reconstructed_face, | |
instyle, | |
]) | |
style_type.change(fn=update_slider, | |
inputs=style_type, | |
outputs=style_index) | |
style_type.change(fn=update_style_image, | |
inputs=style_type, | |
outputs=style_image) | |
generate_button.click(fn=model.generate, | |
inputs=[ | |
style_type, | |
style_index, | |
structure_weight, | |
color_weight, | |
structure_only, | |
instyle, | |
], | |
outputs=result) | |
example_images.click(fn=set_example_image, | |
inputs=example_images, | |
outputs=example_images.components) | |
example_styles.click(fn=set_example_styles, | |
inputs=example_styles, | |
outputs=example_styles.components) | |
example_weights.click(fn=set_example_weights, | |
inputs=example_weights, | |
outputs=example_weights.components) | |
demo.launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |