import logging import time import click from celery import shared_task from core.rag.index_processor.index_processor_factory import IndexProcessorFactory from core.rag.models.document import Document from extensions.ext_database import db from models.dataset import Dataset, DocumentSegment from models.dataset import Document as DatasetDocument @shared_task(queue='dataset') def deal_dataset_vector_index_task(dataset_id: str, action: str): """ Async deal dataset from index :param dataset_id: dataset_id :param action: action Usage: deal_dataset_vector_index_task.delay(dataset_id, action) """ logging.info(click.style('Start deal dataset vector index: {}'.format(dataset_id), fg='green')) start_at = time.perf_counter() try: dataset = Dataset.query.filter_by( id=dataset_id ).first() if not dataset: raise Exception('Dataset not found') index_type = dataset.doc_form index_processor = IndexProcessorFactory(index_type).init_index_processor() if action == "remove": index_processor.clean(dataset, None, with_keywords=False) elif action == "add": dataset_documents = db.session.query(DatasetDocument).filter( DatasetDocument.dataset_id == dataset_id, DatasetDocument.indexing_status == 'completed', DatasetDocument.enabled == True, DatasetDocument.archived == False, ).all() if dataset_documents: documents = [] for dataset_document in dataset_documents: # delete from vector index segments = db.session.query(DocumentSegment).filter( DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True ) .order_by(DocumentSegment.position.asc()).all() for segment in segments: document = Document( page_content=segment.content, metadata={ "doc_id": segment.index_node_id, "doc_hash": segment.index_node_hash, "document_id": segment.document_id, "dataset_id": segment.dataset_id, } ) documents.append(document) # save vector index index_processor.load(dataset, documents, with_keywords=False) elif action == 'update': # clean index index_processor.clean(dataset, None, with_keywords=False) dataset_documents = db.session.query(DatasetDocument).filter( DatasetDocument.dataset_id == dataset_id, DatasetDocument.indexing_status == 'completed', DatasetDocument.enabled == True, DatasetDocument.archived == False, ).all() # add new index if dataset_documents: documents = [] for dataset_document in dataset_documents: # delete from vector index segments = db.session.query(DocumentSegment).filter( DocumentSegment.document_id == dataset_document.id, DocumentSegment.enabled == True ).order_by(DocumentSegment.position.asc()).all() for segment in segments: document = Document( page_content=segment.content, metadata={ "doc_id": segment.index_node_id, "doc_hash": segment.index_node_hash, "document_id": segment.document_id, "dataset_id": segment.dataset_id, } ) documents.append(document) # save vector index index_processor.load(dataset, documents, with_keywords=False) end_at = time.perf_counter() logging.info( click.style('Deal dataset vector index: {} latency: {}'.format(dataset_id, end_at - start_at), fg='green')) except Exception: logging.exception("Deal dataset vector index failed")