Spaces:
Runtime error
Runtime error
File size: 13,887 Bytes
8e10d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from distutils.filelist import FileList
import json
from datasets import load_dataset
from sklearn.model_selection import train_test_split
import pandas as pd
import os
from json import encoder
from codeScripts.utils import save_json, load_json, create_file_path
#variables que tengo que hacer parametrizables:
fileList = ["__appcache__/biConNotaAnon.json", "__appcache__/metodos-de-captura-conNota-Anon.json"]
path_created_dataset = create_file_path("JoinedSubjects2.json", doctype=4)
#los parámetros de SentTransf_train
def getJsonInfo(fileName):
subject_fileDataset = {'train': load_json(fileName)}
samples = []
for i in range (0,len(subject_fileDataset["train"])): #len(subject1)
hashed_id = subject_fileDataset["train"][i]['hashed_id']
keywords = subject_fileDataset["train"][i]['metadata']['keywords']
mark = subject_fileDataset["train"][i]['nota']
question = subject_fileDataset["train"][i]['metadata']['enunciado']
responseStudent = subject_fileDataset["train"][i]['respuesta']
responseTeacher = ""
for j in range(0,len(subject_fileDataset["train"][i]['metadata']['minipreguntas'])):
responseTeacher = responseTeacher + subject_fileDataset["train"][i]['metadata']['minipreguntas'][j]['minirespuesta']
ie = {'responseTeacher': responseTeacher,
'responseStudent': responseStudent,
'mark': mark,
'hashed_id': hashed_id,
'keywords': keywords
}
samples.append(ie)
return samples
def PreparingDataSet():
#Creating a list with the necesarry fields
first_iter = 1
for subject in fileList:
if first_iter:
subjectFileList = getJsonInfo(subject)
first_iter = 0
else:
subjectFileList = subjectFileList + getJsonInfo(subject)
#Splitting the dataset into train,valid and test data
data_train ,data_test = train_test_split(subjectFileList,test_size=0.3)
data_train ,data_valid = train_test_split(data_train,test_size=0.1)
data = {'train': data_train
,'test': data_test
,'valid': data_valid
}
save_json(path_created_dataset, data)
import json
import math
import pandas as pd
from datasets import load_dataset,Dataset,DatasetDict
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, mean_absolute_percentage_error, r2_score, roc_curve
from sentence_transformers import SentenceTransformer, InputExample, losses, util, evaluation, models
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from torch.utils.data import DataLoader
from torch import nn
import datasets
import sklearn
import sentence_transformers
import torch
class SentTransf_train():
def __init__(self, modelsToTrain = [
{"checkPoint": "distiluse-base-multilingual-cased-v1", "fromScratch": False},
{"checkPoint": "paraphrase-multilingual-MiniLM-L12-v2", "fromScratch": False},
{"checkPoint": "paraphrase-multilingual-mpnet-base-v2", "fromScratch": False},
{"checkPoint": "all-distilroberta-v1", "fromScratch": False},
{"checkPoint": "bert-base-multilingual-uncased", "fromScratch": True},
{"checkPoint": "dccuchile/bert-base-spanish-wwm-uncased", "fromScratch": True}
], epochsToTest = [1,5,10,30,50,100], saving_path = create_file_path('', doctype=4)):
#modelsToTrain = [{"checkPoint": "distiluse-base-multilingual-cased-v1", "fromScratch": False}]
#epochsToTest = [1]
self.saving_path = saving_path
self.data_train = self.__getDatasetPartition(path_created_dataset, "train")
self.data_test = self.__getDatasetPartition(path_created_dataset, "test")
self.data_valid = self.__getDatasetPartition(path_created_dataset, "valid")
#epochsToTest = [1,5,10,30,50,100]
#Get evaluator
evaluator = self.__CreateModelEvaluationData()
#Train the models
for model in modelsToTrain:
for epochs in epochsToTest:
self.__TrainModel(model["checkPoint"], evaluator, epochs, model["fromScratch"])
def __getDatasetPartition(self, fileName, split):
subject1_fileDataset = load_dataset("json", data_files=fileName, split="train")
samples = []
for i in range (0,len(subject1_fileDataset[split][0])): #len(subject1)
mark = subject1_fileDataset[split][0][i]['mark']
responseStudent = subject1_fileDataset[split][0][i]['responseStudent']
responseTeacher = subject1_fileDataset[split][0][i]['responseTeacher']
ie = InputExample(texts=[responseTeacher, responseStudent], label=mark)
samples.append(ie)
return samples
def __CreateModelEvaluationData(self):
sentences1 = []
sentences2 = []
scores = []
for i in range (0,len(self.data_valid)):
sentences1.append(self.data_valid[i].texts[0])
sentences2.append(self.data_valid[i].texts[1])
scores.append(self.data_valid[i].label)
evaluator = evaluation.EmbeddingSimilarityEvaluator(sentences1, sentences2, scores)
return evaluator
def __TrainModel(self, checkpoint, evaluator, epochs, fromScratch):
batch_size = int(len(self.data_train) * 0.1)
#Create the model from checkpoint
if (not fromScratch):
model = SentenceTransformer(checkpoint)
else:
word_embedding_model = models.Transformer(checkpoint, max_seq_length=256)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
dense_model = models.Dense(in_features=pooling_model.get_sentence_embedding_dimension(), out_features=256, activation_function=nn.Tanh())
model = SentenceTransformer(modules=[word_embedding_model, pooling_model, dense_model])
train_dataloader = DataLoader(self.data_train, shuffle=True, batch_size=batch_size)
train_loss = losses.CosineSimilarityLoss(model)
#Fit the model
local_model_path = self.saving_path + 'Model_' + checkpoint + '/' + str(epochs) + '_Epochs'
warmup_steps = math.ceil(len(train_dataloader) * epochs * 0.1) #10% of train data for warm-up
evaluation_steps = int(len(train_dataloader)*0.1)
print(len(train_dataloader),warmup_steps,evaluation_steps)
model.fit(train_objectives=[(train_dataloader, train_loss)]
, epochs=epochs
, warmup_steps=warmup_steps
, evaluator=evaluator
, evaluation_steps=evaluation_steps
,output_path=local_model_path
,save_best_model=True)
try:
os.mkdir(self.saving_path + "models")
except:
pass
model.save(self.saving_path + "models/" +checkpoint+ str("-Epochs-") + str(epochs))
import json
import math
import pandas as pd
from datasets import load_dataset,Dataset,DatasetDict
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, mean_absolute_percentage_error, r2_score, roc_curve
from sentence_transformers import SentenceTransformer, InputExample, losses, util, evaluation
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from torch.utils.data import DataLoader
class SentTransf_test():
def __init__(self, modelsToTest = ['distiluse-base-multilingual-cased-v1'
,'paraphrase-multilingual-MiniLM-L12-v2'
,'paraphrase-multilingual-mpnet-base-v2'
,'all-distilroberta-v1'
,'bert-base-multilingual-uncased'
,'dccuchile_bert-base-spanish-wwm-uncased'
], epochsToTest = [1,5,10,30,50,100], save_path = create_file_path('', doctype=4)[:-1]):
self.modelsToTest = modelsToTest
self.epochsToTest = epochsToTest
self.save_path = save_path
self.data_test = self.__getDatasetPartition(path_created_dataset, "test")
#modelsToTest = ['distiluse-base-multilingual-cased-v1']
#epochsToTest = [1]
def similarity(self,model_path, text1, text2):
#local_model_path = self.save_path + '/' + checkpoint + '/' + str(epochs) + '_Epochs'
model = SentenceTransformer(model_path)
#Compute embedding for both lists
embeddings1 = model.encode(text1, convert_to_tensor=True)
embeddings2 = model.encode(text2, convert_to_tensor=True)
#Compute cosine-similarits
cosine_score = util.cos_sim(embeddings1, embeddings2)
return cosine_score
def test_model(self):
try:
os.mkdir(self.save_path + '/tests')
except:
pass
self.model_name = []
self.epochs = []
self.metricMAE = []
self.metricMSE = []
self.metricRMSE = []
self.metricRMSLE = []
self.metricMAPE = []
self.metricR2 = []
#Train & Test the model
cnt=0
for checkpoint in self.modelsToTest:
#checkpoint = 'Model_' + checkpoint.replace('/','_')
checkpoint = 'Model_' + checkpoint
df = pd.DataFrame(columns=['Sentence1', 'Sentence2', 'Hashed_id', 'Mark'])
dfMetrics = pd.DataFrame(columns=['Model','Epochs', 'MAE', 'MSE', 'RMSE', 'RMSLE', 'MAPE', 'R2'])
for epochs in self.epochsToTest:
self.__TestModel(checkpoint, self.data_test, epochs, df)
self.model_name.append(checkpoint)
#Save Score Results file
df.to_csv(self.save_path + '/tests/' + checkpoint +'_Scores_Results.csv', index=False, sep=';', encoding='utf-8')
#Save Metrics file
dfMetrics['Model'] = self.model_name
dfMetrics['Epochs'] = self.epochs
dfMetrics['MAE'] = self.metricMAE
dfMetrics['MSE'] = self.metricMSE
dfMetrics['RMSE'] = self.metricRMSE
dfMetrics['RMSLE'] = self.metricRMSLE
dfMetrics['MAPE'] = self.metricMAPE
dfMetrics['R2'] = self.metricR2
dfMetrics.to_csv(self.save_path + '/tests/All_Metrics_Results.csv', index=False, sep=';', encoding='utf-8')
def __getDatasetPartition(self, fileName, split):
subject1_fileDataset = load_dataset("json", data_files=fileName, split="train")
samples = []
for i in range (0,len(subject1_fileDataset[split][0])): #len(subject1)
hashed_id = subject1_fileDataset[split][0][i]['hashed_id']
mark = subject1_fileDataset[split][0][i]['mark']
responseStudent = subject1_fileDataset[split][0][i]['responseStudent']
responseTeacher = subject1_fileDataset[split][0][i]['responseTeacher']
ie = InputExample(guid= hashed_id, texts=[responseTeacher, responseStudent], label=mark)
samples.append(ie)
return samples
def __TestModel(self, checkpoint, data, epochs, df):
#Load model
#local_model_path = 'jfarray' + '/' + checkpoint + '_' + str(epochs) + '_Epochs'
local_model_path = self.save_path + '/' + checkpoint + '/' + str(epochs) + '_Epochs'
model = SentenceTransformer(local_model_path)
hashed_ids = []
sentences1 = []
sentences2 = []
marks = []
scores = []
marksFloat = []
scoresFloat = []
for i in range (0,len(data)): #len(data)
sentences1.append(data[i].texts[0])
sentences2.append(data[i].texts[1])
#Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
#Compute cosine-similarits
cosine_scores = util.cos_sim(embeddings1, embeddings2)
#Output the pairs with their score
for i in range(len(sentences1)):
hashed_ids.append(data[i].guid)
marks.append(str(data[i].label).replace('.',','))
marksFloat.append(data[i].label)
scores.append(str(round(cosine_scores[i][i].item(),3)).replace('.',','))
scoresFloat.append(round(cosine_scores[i][i].item(),3))
#Save scores in the file
df['Hashed_id'] = hashed_ids
df['Mark'] = marks
df['Score_' + str(epochs)] = scores
df['Sentence1'] = sentences1
df['Sentence2'] = sentences2
self.epochs.append(str(epochs))
#Calculate metrics 'MAE', 'MSE', 'RMSE', 'RMSLE', 'MAPE', 'R2'
self.metricMAE.append(str(mean_absolute_error(marksFloat, scoresFloat)).replace('.',','))
self.metricMSE.append(str(mean_squared_error(marksFloat, scoresFloat, squared = True)).replace('.',','))
self.metricRMSE.append(str(mean_squared_error(marksFloat, scoresFloat, squared = False)).replace('.',','))
try:
self.metricRMSLE.append(str(mean_squared_log_error(marksFloat, scoresFloat)).replace('.',','))
except:
self.metricRMSLE.append('-')
self.metricMAPE.append(str(mean_absolute_percentage_error(marksFloat, scoresFloat)).replace('.',','))
self.metricR2.append(str(r2_score(marksFloat, scoresFloat)).replace('.',','))
#Evaluate Model this test data
batch_size = 15 #Initializes the batch size with the same value as the training
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(self.data_test, batch_size=batch_size, name= checkpoint)
test_evaluator(model, output_path= self.save_path + '/tests/')
|