Spaces:
Runtime error
Runtime error
File size: 12,658 Bytes
155d7f2 ce84b09 155d7f2 95069b9 e228d0e 155d7f2 ce84b09 155d7f2 ce84b09 155d7f2 ce84b09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import json
import numpy as np
import hunspell
import nltk
import nltk.corpus
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
from nltk import ne_chunk
import re
import yake
import spacy
import os
import shutil
#dic = hunspell.Hunspell('/Users/miguel.r/Desktop/UNIR/PLenTaS/CORPUS/dict_es_ES/es_ES', '/Users/miguel.r/Desktop/es_ES/es_ES.dic')
nlp = spacy.load('es_core_news_sm') # Paquete spaCy en español (es)
nltk.download('punkt')
# Clase creada para contar sílabas de una palabra (Source: https://github.com/amunozf/separasilabas/blob/master/separasilabas.py)
#class char():
#def __init__(self):
# pass
class char_line():
def __init__(self, word):
self.word = word
self.char_line = [(char, self.char_type(char)) for char in word]
self.type_line = ''.join(chartype for char, chartype in self.char_line)
def char_type(self, char):
if char in set(['a', 'á', 'e', 'é','o', 'ó', 'í', 'ú']):
return 'V' #strong vowel
if char in set(['i', 'u', 'ü']):
return 'v' #week vowel
if char=='x':
return 'x'
if char=='s':
return 's'
else:
return 'c'
def find(self, finder):
return self.type_line.find(finder)
def split(self, pos, where):
return char_line(self.word[0:pos+where]), char_line(self.word[pos+where:])
def split_by(self, finder, where):
split_point = self.find(finder)
if split_point!=-1:
chl1, chl2 = self.split(split_point, where)
return chl1, chl2
return self, False
def __str__(self):
return self.word
def __repr__(self):
return repr(self.word)
class silabizer():
def __init__(self):
self.grammar = []
def split(self, chars):
rules = [('VV',1), ('cccc',2), ('xcc',1), ('ccx',2), ('csc',2), ('xc',1), ('cc',1), ('vcc',2), ('Vcc',2), ('sc',1), ('cs',1),('Vc',1), ('vc',1), ('Vs',1), ('vs',1)]
for split_rule, where in rules:
first, second = chars.split_by(split_rule,where)
if second:
if first.type_line in set(['c','s','x','cs']) or second.type_line in set(['c','s','x','cs']):
#print 'skip1', first.word, second.word, split_rule, chars.type_line
continue
if first.type_line[-1]=='c' and second.word[0] in set(['l','r']):
continue
if first.word[-1]=='l' and second.word[-1]=='l':
continue
if first.word[-1]=='r' and second.word[-1]=='r':
continue
if first.word[-1]=='c' and second.word[-1]=='h':
continue
return self.split(first)+self.split(second)
return [chars]
def __call__(self, word):
return self.split(char_line(word))
# Contador número de frases y palabras empleadas en la respuesta
def check_senteces_words(student_answer):
# Tokenizing into sentences
sentences=[]
words=[]
letter_per_word=[]
syll=0 # syllables counter
TokenizeAnswer = sent_tokenize(student_answer)
for token in TokenizeAnswer:
regex = '\\.'
token = re.sub(regex , '', token)
sentences.append(token)
for i in range(len(sentences)):
word = sentences[i].split(' ')
for j in range(len(word)):
words.append(word[j])
syllables = silabizer()
syll=syll+len(syllables(word[j]))
letter_per_word.append(len(word[j]))
sentencesLenght = len(sentences)
wordsLenght = (len(words))
#print(f'Number of senteces used in the answer: {sentencesLenght}')
#print(f'Number of words used in the answer: {wordsLenght}')
return sentencesLenght, wordsLenght, syll, letter_per_word
# Contador faltas de ortografía
def spelling_corrector(student_answer, hunspell_aff = '/Users/javier.sanz/OneDrive - UNIR/Desktop/PLeNTas_V3/es_ES/es_ES' , hunspell_dic = '/Users/javier.sanz/OneDrive - UNIR/Desktop/PLeNTas_V3/es_ES/es_ES.dic' ):
dic = hunspell.Hunspell(hunspell_aff, hunspell_dic)
errors=0
words = student_answer.split(' ')
wrong_words = []
for word in words:
for element in clean_words(word):
if not dic.spell(element):
#print(f'Spelling mistake: {element}')
wrong_words.append(element)
errors+=1
#print(f'Spelling mistakes: {errors}')
return errors,wrong_words
# Legibilidad de la respuesta en función del índice Fernández-Huerta
def FHuertas_index(sentencesLenght, wordsLenght, syll):
FH = 206.84 - 0.60*(syll*100/wordsLenght) - 1.02*(sentencesLenght*100/wordsLenght)
FH = round(FH, 3)
legibilidad_fh = ""
#print(f'\nFernández-Huerta Index: {FH}')
if 0 < FH <= 30:
#print('Legibilidad FH: muy difícil.')
legibilidad_fh = 'muy díficil'
if 30 < FH <= 50:
#print('Legibilidad FH: difícil.')
legibilidad_fh = 'díficil'
if 50 < FH <= 60:
#print('Legibilidad FH: ligeramente difícil.')
legibilidad_fh = 'ligeramente díficil'
if 60 < FH <= 70:
#print('Legibilidad FH: adecuado.')
legibilidad_fh = 'adecuado'
if 70 < FH <= 80:
#print('Legibilidad FH: ligeramente fácil.')
legibilidad_fh = 'ligeramente fácil'
if 80 < FH <= 90:
#print('Legibilidad FH: fácil.')
legibilidad_fh = 'fácil'
if 90 < FH <= 100:
#print('Legibilidad FH: muy fácil.')
legibilidad_fh = 'muy fácil'
return FH, legibilidad_fh
# Legibilidad de la respuesta en función del índice mu
def mu_index(sentencesLenght, wordsLenght, letter_per_word):
med = np.mean(letter_per_word)
var = np.var(letter_per_word)
try:
mu=(wordsLenght/(wordsLenght-1))*(med/var)*100
except Exception as ex:
print("Error on mu_index: " + str(ex))
mu = 0
mu=round(mu, 3)
legibilidad_mu = ""
#print(f'\nMu index: {mu}')
if 0 < mu <= 30:
#print('Legibilidad Mu: muy difícil.')
legibilidad_mu = 'muy difícil'
if 30 < mu <= 50:
#print('Legibilidad Mu: difícil.')
legibilidad_mu = 'difícil'
if 50 < mu <= 60:
#print('Legibilidad Mu: ligeramente difícil.')
legibilidad_mu = 'ligeramente difícil'
if 60 < mu <= 70:
#print('Legibilidad Mu: adecuado.')
legibilidad_mu = 'adecuado'
if 70 < mu <= 80:
#print('Legibilidad Mu: ligeramente fácil.')
legibilidad_mu = 'ligeramente fácil'
if 80 < mu <= 90:
#print('Legibilidad Mu: fácil.')
legibilidad_mu = 'fácil'
if 90 < mu <= 100:
#print('Legibilidad Mu: muy fácil.')
legibilidad_mu = 'muy fácil'
return mu, legibilidad_mu
# Extractor de las kewords de un texto con librería yake
def keyword_extractor(text, numOfKeywords, language, max_ngram_size,deduplication_threshold = 0.9, features=None):
test_keywords=[]
# Deleting special characters and set text in lower case
regex = '\\\n'
text = re.sub(regex , ' ', text)
text = text.lower()
custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, top=numOfKeywords, features= features )
keywords = custom_kw_extractor.extract_keywords(text)
for kw in keywords:
test_keywords.append(kw[0])
return test_keywords
# categorización de palabras
def word_categorization(student_answer):
fileDocument=[]
TokenizeAnswer = sent_tokenize(student_answer)
for token in TokenizeAnswer:
fileDocument.append(token)
sentencesLenght = len(fileDocument)
sentence=0
while sentence < sentencesLenght:
# Word Tokenize sentence and Tagging the grammer tag to words (verb, noun, adj, etc...)
word_tokens = word_tokenize(fileDocument[sentence])
doc = nlp(fileDocument[sentence])
pre_chunk = [(w.text, w.pos_) for w in doc]
#print(pre_chunk)
sentence += 1
#pre_chunk = nltk.pos_tag(word_tokens)
tree = ne_chunk(pre_chunk) # same tagging than before
#grammer_np = ("NP: {<DT>?<JJ>*<NN>}")
# Chunking rules to filter out:
grammer_np = ("NP: {<DET>?<ADJ>*<NOUN>*<VERB>}")
grammar = r"""
NP: {<DT|PP\$>?<JJ>*<NN>} # chunk determiner/possessive, adjectives and nouns
{<NNP>+} # chunk sequences of proper nouns
"""
chunk_parser = nltk.RegexpParser(grammer_np)
chunk_result = chunk_parser.parse(tree)
#..................................................................................................
def char_split(word, character):
palabra1=""
palabra2=""
found = 0
for w in word:
if w == character and not found:
found = 1
else:
if not found:
palabra1 = palabra1 + w
else:
palabra2 = palabra2 + w
return [palabra1, palabra2]
def clean_words(string):
words_sentence = []
for w in string:
if not w.isalnum():
if char_split(string, w)[0] != "":
words_sentence.append(char_split(string, w)[0])
string = char_split(string, w)[len(char_split(string, w))-1]
if string != "":
words_sentence.append(string)
return words_sentence
def getNameFile(string):
directories = string.split("/")
return re.sub(".json","", directories[len(directories)-1])
def getIDrange(rango_ID, df):
if rango_ID == "All":
IDs = list(range(len(df['hashed_id'])))
else:
rango = []
r= rango_ID.split(",")
for i in r:
c_w= clean_words(i)
if len(c_w) == 2:
rango= rango + list(range(int(c_w[0]) -1 ,int(c_w[1])))
elif len(c_w) == 1:
rango.append(int(c_w[0]) -1)
IDs = rango
return IDs
def save_json(path, data, isIndent = True):
if isIndent:
json_object = json.dumps(data, indent = 11, ensure_ascii= False)
else:
json_object = json.dumps(data, ensure_ascii= False)
# Writing output to a json file
with open(path, "w") as outfile:
outfile.write(json_object)
def load_json(path):
with open(path, "r", encoding="utf8") as f:
data = json.loads("[" + f.read().replace("}\n{", "},\n{") + "]")
return data
def load_json_dtset(path):
with open(path, "r", encoding="latin-1") as f:
data = json.loads("[" + f.read().replace("}\n{", "},\n{") + "]")
return data
def splitResponse(respuesta_alumno_raw):
#pre-processing the student's response
regex = '\\\n'
respuesta_alumno = re.sub(regex , ' ', respuesta_alumno_raw)
respuesta_alumno = respuesta_alumno.lower()
#stacking each sentence of the student's response
sentences=[]
TokenizeAnswer = sent_tokenize(respuesta_alumno)
for token in TokenizeAnswer:
regex = '\\.'
token = re.sub(regex , '', token)
sentences.append(token)
return sentences
def create_file_path(file, doctype):
"""
This function is to create relative paths to store data.
Inputs:
file: the file or subpath + file where the info is to be stored
doctype: 1- Info from the api, 2- Output documents, 3- Images, 4- Bert models/documents
Outputs:
path: the generated path
"""
if doctype == 1:
path = "api/" + file
elif doctype == 2:
path = "archivos/OutputFiles2/" + file
elif doctype == 3:
path = "archivos/Images/" + file
else:
path = "codeScripts/Dependencies/BERT-models/Prueba3/" + file
return path
def remove(path):
""" param <path> could either be relative or absolute. """
if os.path.isfile(path) or os.path.islink(path):
os.remove(path) # remove the file
elif os.path.isdir(path):
shutil.rmtree(path) # remove dir and all contains
else:
raise ValueError("file {} is not a file or dir.".format(path)) |