File size: 12,658 Bytes
155d7f2
 
 
 
 
 
 
 
 
 
 
ce84b09
 
155d7f2
 
95069b9
e228d0e
155d7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce84b09
155d7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce84b09
 
 
 
 
 
155d7f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce84b09
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import json
import numpy as np
import hunspell
import nltk
import nltk.corpus 
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
from nltk import ne_chunk
import re
import yake
import spacy
import os
import shutil 
#dic = hunspell.Hunspell('/Users/miguel.r/Desktop/UNIR/PLenTaS/CORPUS/dict_es_ES/es_ES', '/Users/miguel.r/Desktop/es_ES/es_ES.dic')

nlp = spacy.load('es_core_news_sm') # Paquete spaCy en español (es)
nltk.download('punkt')

# Clase creada para contar sílabas de una palabra (Source: https://github.com/amunozf/separasilabas/blob/master/separasilabas.py)

#class char():
    #def __init__(self):
       # pass
    
class char_line():
    def __init__(self, word):
        self.word = word
        self.char_line = [(char, self.char_type(char)) for char in word]
        self.type_line = ''.join(chartype for char, chartype in self.char_line)
        
    def char_type(self, char):
        if char in set(['a', 'á', 'e', 'é','o', 'ó', 'í', 'ú']):
            return 'V' #strong vowel
        if char in set(['i', 'u', 'ü']):
            return 'v' #week vowel
        if char=='x':
            return 'x'
        if char=='s':
            return 's'
        else:
            return 'c'
            
    def find(self, finder):
        return self.type_line.find(finder)
        
    def split(self, pos, where):
        return char_line(self.word[0:pos+where]), char_line(self.word[pos+where:])
    
    def split_by(self, finder, where):
        split_point = self.find(finder)
        if split_point!=-1:
            chl1, chl2 = self.split(split_point, where)
            return chl1, chl2
        return self, False
     
    def __str__(self):
        return self.word
    
    def __repr__(self):
        return repr(self.word)

class silabizer():
    def __init__(self):
        self.grammar = []
        
    def split(self, chars):
        rules  = [('VV',1), ('cccc',2), ('xcc',1), ('ccx',2), ('csc',2), ('xc',1), ('cc',1), ('vcc',2), ('Vcc',2), ('sc',1), ('cs',1),('Vc',1), ('vc',1), ('Vs',1), ('vs',1)]
        for split_rule, where in rules:
            first, second = chars.split_by(split_rule,where)
            if second:
                if first.type_line in set(['c','s','x','cs']) or second.type_line in set(['c','s','x','cs']):
                    #print 'skip1', first.word, second.word, split_rule, chars.type_line
                    continue
                if first.type_line[-1]=='c' and second.word[0] in set(['l','r']):
                    continue
                if first.word[-1]=='l' and second.word[-1]=='l':
                    continue
                if first.word[-1]=='r' and second.word[-1]=='r':
                    continue
                if first.word[-1]=='c' and second.word[-1]=='h':
                    continue
                return self.split(first)+self.split(second)
        return [chars]
        
    def __call__(self, word):
        return self.split(char_line(word))

# Contador número de frases y palabras empleadas en la respuesta
def check_senteces_words(student_answer):
    
    # Tokenizing into sentences
    sentences=[]
    words=[]
    letter_per_word=[]
    syll=0 # syllables counter
    
    TokenizeAnswer = sent_tokenize(student_answer)
    for token in TokenizeAnswer:
        regex = '\\.'
        token = re.sub(regex , '', token)
        sentences.append(token)
    for i in range(len(sentences)):
        word = sentences[i].split(' ') 
        for j in range(len(word)):
            words.append(word[j])
            syllables = silabizer()
            syll=syll+len(syllables(word[j]))
            letter_per_word.append(len(word[j]))

    sentencesLenght = len(sentences)
    wordsLenght = (len(words))
    #print(f'Number of senteces used in the answer: {sentencesLenght}')
    #print(f'Number of words used in the answer: {wordsLenght}')
    
    return sentencesLenght, wordsLenght, syll, letter_per_word

# Contador faltas de ortografía
def spelling_corrector(student_answer, hunspell_aff = '/Users/javier.sanz/OneDrive - UNIR/Desktop/PLeNTas_V3/es_ES/es_ES' , hunspell_dic = '/Users/javier.sanz/OneDrive - UNIR/Desktop/PLeNTas_V3/es_ES/es_ES.dic' ):

    dic = hunspell.Hunspell(hunspell_aff, hunspell_dic)
    errors=0
    words = student_answer.split(' ')
    wrong_words = []
    for word in words:
        for element in clean_words(word):            
            if not dic.spell(element):
                #print(f'Spelling mistake: {element}')
                wrong_words.append(element)
                errors+=1        
    #print(f'Spelling mistakes: {errors}')
    return errors,wrong_words
        
# Legibilidad de la respuesta en función del índice Fernández-Huerta
def FHuertas_index(sentencesLenght, wordsLenght, syll):    
    FH = 206.84 - 0.60*(syll*100/wordsLenght) - 1.02*(sentencesLenght*100/wordsLenght) 
    FH = round(FH, 3)
    legibilidad_fh = ""
    #print(f'\nFernández-Huerta Index: {FH}')
    if 0 < FH <= 30:
        #print('Legibilidad FH: muy difícil.')
        legibilidad_fh = 'muy díficil'
    if 30 < FH <= 50:
        #print('Legibilidad FH: difícil.')  
        legibilidad_fh = 'díficil'
    if 50 < FH <= 60:
        #print('Legibilidad FH: ligeramente difícil.')
        legibilidad_fh = 'ligeramente díficil'
    if 60 < FH <= 70:
        #print('Legibilidad FH: adecuado.')
        legibilidad_fh = 'adecuado'
    if 70 < FH <= 80:
        #print('Legibilidad FH: ligeramente fácil.')
        legibilidad_fh = 'ligeramente fácil'
    if 80 < FH <= 90:
        #print('Legibilidad FH: fácil.')
        legibilidad_fh = 'fácil'
    if 90 < FH <= 100:
        #print('Legibilidad FH: muy fácil.')
        legibilidad_fh = 'muy fácil'
        
    return FH, legibilidad_fh
    
# Legibilidad de la respuesta en función del índice mu
def mu_index(sentencesLenght, wordsLenght, letter_per_word):
    med = np.mean(letter_per_word)
    var = np.var(letter_per_word)
    try:
        mu=(wordsLenght/(wordsLenght-1))*(med/var)*100
    except Exception as ex:
        print("Error on mu_index: " + str(ex))
        mu = 0

    mu=round(mu, 3)

    legibilidad_mu = ""
    #print(f'\nMu index: {mu}')
    if 0 < mu <= 30:
        #print('Legibilidad Mu: muy difícil.')
        legibilidad_mu = 'muy difícil'
    if 30 < mu <= 50:
        #print('Legibilidad Mu: difícil.')  
        legibilidad_mu = 'difícil'
    if 50 < mu <= 60:
        #print('Legibilidad Mu: ligeramente difícil.')
        legibilidad_mu = 'ligeramente difícil'
    if 60 < mu <= 70:
        #print('Legibilidad Mu: adecuado.')
        legibilidad_mu = 'adecuado'
    if 70 < mu <= 80:
        #print('Legibilidad Mu: ligeramente fácil.')
        legibilidad_mu = 'ligeramente fácil'
    if 80 < mu <= 90:
        #print('Legibilidad Mu: fácil.')
        legibilidad_mu = 'fácil'
    if 90 < mu <= 100:
        #print('Legibilidad Mu: muy fácil.')
        legibilidad_mu = 'muy fácil'
        
    return mu, legibilidad_mu

# Extractor de las kewords de un texto con librería yake
def keyword_extractor(text, numOfKeywords, language, max_ngram_size,deduplication_threshold = 0.9, features=None):
    test_keywords=[]
    # Deleting special characters and set text in lower case
    regex = '\\\n'
    text = re.sub(regex , ' ', text)
    text = text.lower()    
    custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, top=numOfKeywords, features= features )
    keywords = custom_kw_extractor.extract_keywords(text)
    for kw in keywords:
        test_keywords.append(kw[0])
    return test_keywords

# categorización de palabras
def word_categorization(student_answer):    
    fileDocument=[]
    TokenizeAnswer = sent_tokenize(student_answer)
    for token in TokenizeAnswer:
        fileDocument.append(token)
    sentencesLenght = len(fileDocument)
    sentence=0
    while sentence < sentencesLenght:      
        # Word Tokenize sentence and Tagging the grammer tag to words (verb, noun, adj, etc...)
        word_tokens = word_tokenize(fileDocument[sentence])
        doc = nlp(fileDocument[sentence])
        pre_chunk = [(w.text, w.pos_) for w in doc]
        #print(pre_chunk)
        sentence += 1
        #pre_chunk = nltk.pos_tag(word_tokens)
        tree = ne_chunk(pre_chunk) # same tagging than before
        #grammer_np = ("NP: {<DT>?<JJ>*<NN>}")
        
        # Chunking rules to filter out:
        grammer_np = ("NP: {<DET>?<ADJ>*<NOUN>*<VERB>}")
        grammar = r"""

          NP: {<DT|PP\$>?<JJ>*<NN>}   # chunk determiner/possessive, adjectives and nouns

              {<NNP>+}                # chunk sequences of proper nouns

        """
        chunk_parser = nltk.RegexpParser(grammer_np)
        chunk_result = chunk_parser.parse(tree)

#..................................................................................................
def char_split(word, character):
    palabra1=""
    palabra2=""
    found = 0
    for w in word:
        if w == character and not found:
            found = 1
        else:
            if not found:
              palabra1 = palabra1 + w
            else:
              palabra2 = palabra2 + w

    return [palabra1, palabra2]

def clean_words(string):
    words_sentence = []
    for w in string:
      if not w.isalnum():
        if char_split(string, w)[0] != "":
            words_sentence.append(char_split(string, w)[0])
        string = char_split(string, w)[len(char_split(string, w))-1]

    if string != "":
        words_sentence.append(string)
    return words_sentence

def getNameFile(string):
    directories = string.split("/")
    return re.sub(".json","", directories[len(directories)-1])


def getIDrange(rango_ID, df):
    if rango_ID == "All":
        IDs = list(range(len(df['hashed_id'])))
    else:
        rango = []
        r= rango_ID.split(",")
        for i in r:
            c_w= clean_words(i)
            if len(c_w) == 2:
                rango= rango + list(range(int(c_w[0]) -1 ,int(c_w[1])))
            elif len(c_w) == 1:
                rango.append(int(c_w[0]) -1)
        IDs = rango

    return IDs

def save_json(path, data, isIndent = True):
    if isIndent:
        json_object = json.dumps(data, indent = 11, ensure_ascii= False)
    else:
        json_object = json.dumps(data, ensure_ascii= False)
    # Writing output to a json file
    with open(path, "w") as outfile:
        outfile.write(json_object)


def load_json(path):
    with open(path, "r", encoding="utf8") as f:
        data = json.loads("[" + f.read().replace("}\n{", "},\n{") + "]")
    
    return data

def load_json_dtset(path):
    with open(path, "r", encoding="latin-1") as f:
        data = json.loads("[" + f.read().replace("}\n{", "},\n{") + "]")
    
    return data

    
def splitResponse(respuesta_alumno_raw):
    #pre-processing the student's response
    regex = '\\\n'
    respuesta_alumno = re.sub(regex , ' ', respuesta_alumno_raw)
    respuesta_alumno = respuesta_alumno.lower()

    #stacking each sentence of the student's response
    sentences=[]                        
    TokenizeAnswer = sent_tokenize(respuesta_alumno)
    for token in TokenizeAnswer:
        regex = '\\.'
        token = re.sub(regex , '', token)
        sentences.append(token)

    return sentences
        
def create_file_path(file, doctype):
    """

    This function is to create relative paths to store data.

    Inputs:

        file: the file or subpath + file where the info is to be stored

        doctype: 1- Info from the api, 2- Output documents, 3- Images, 4- Bert models/documents

    Outputs:

        path: the generated path

    """
    if doctype == 1:
        path = "api/" + file
    elif doctype == 2:
        path = "archivos/OutputFiles2/" + file
    elif doctype == 3:
        path = "archivos/Images/" + file
    else:
        path = "codeScripts/Dependencies/BERT-models/Prueba3/" + file
    return path

def remove(path):
    """ param <path> could either be relative or absolute. """
    if os.path.isfile(path) or os.path.islink(path):
        os.remove(path)  # remove the file
    elif os.path.isdir(path):
        shutil.rmtree(path)  # remove dir and all contains
    else:
        raise ValueError("file {} is not a file or dir.".format(path))