Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
from flask import jsonify | |
from sentence_transformers import SentenceTransformer, InputExample, util | |
from codeScripts.utils import save_json, load_json, create_file_path, remove | |
from plentas import Plentas | |
import pandas as pd | |
import zipfile | |
import os | |
import shutil | |
from datetime import datetime | |
import tablib | |
from pathlib import Path | |
def Main(uploadedFile, txtFileInput, orthographyPercentage, syntaxPercentage, semanticPercentage, studentsRange): | |
error = "" | |
excelPath = "" | |
copySpanishDictionaries() | |
try: | |
if not txtFileInput: | |
error="Por favor seleccione un archivo con las preguntas y respuestas" | |
return [error, excelPath] | |
else: | |
txtFileInput = txtFileInput.name | |
configuration = readQATextFile(txtFileInput) | |
configuration["ortographyPercentage"] = float(orthographyPercentage) | |
configuration["syntaxPercentage"] = float(syntaxPercentage) | |
configuration["semanticPercentage"] = float(semanticPercentage) | |
if studentsRange == "": | |
studentsRange = "All" | |
configuration["students"] = studentsRange | |
if not uploadedFile: | |
error="Por favor seleccione el .zip con las respuestas de los alumnos" | |
return [error, excelPath] | |
else: | |
uploadedFilePath = uploadedFile.name | |
config_json = load_json("configV2.json") | |
# #configuring plentas methodology | |
response = Plentas(config_json[0], [answersTodict(uploadedFilePath), createTeacherJson(configuration)]) | |
# # #overwriting the custom settings for the settings from the api | |
response.setApiSettings(configuration) | |
try: | |
print("Processing!") | |
modelResult = response.processApiData() | |
except Exception as ex: | |
print("Error processing: " + str(ex)) | |
# modelJson = json.dumps(modelResult) | |
excelPath = exportResultToExcelFile(modelResult) | |
except Exception as e: | |
error = "Oops: " + str(e) | |
return [error, excelPath] | |
def exportResultToExcelFile(modelResult): | |
excelData = [] | |
studentsArray = modelResult[0] | |
index = 0 | |
for item in studentsArray: | |
#print("ITEM - " + str(item)) | |
studentData = item[index] | |
excelData.append(studentData) | |
index+= 1 | |
#tableResults = tablib.Dataset(headers=('ID', 'SimilitudSpacy', 'SimilitudBert', 'NotaSemanticaSpacy', 'NotaSemanticaBert', 'NotaSintaxis', 'NotaOrtografia','NotaTotalSpacy','NotaTotalBert','Feedback')) | |
tableResults = tablib.Dataset(headers=('ID', 'SumaTotalSpacy', 'SumaTotaldBert', 'NotaSemanticaSpacy', 'NotaSemanticaBert', 'NotaSintaxis', 'NotaOrtografia','NotaTotalSpacy','NotaTotalBert','Feedback')) | |
tableResults.json=json.dumps(excelData) | |
tableExport=tableResults.export('xlsx') | |
outputFilePath = './output/' + str(datetime.now().microsecond) + '_plentas_output.xlsx' | |
# outputFilePath = './output/plentas_output.xlsx' | |
with open(outputFilePath, 'wb') as f: # open the xlsx file | |
f.write(tableExport) # write the dataset to the xlsx file | |
f.close() | |
return outputFilePath | |
def copySpanishDictionaries(): | |
try: | |
shutil.copy("./assets/hunspell_dictionaries/es_ES/es_ES.aff", "/home/user/.local/lib/python3.8/site-packages/hunspell/dictionaries/es_ES.aff") | |
shutil.copy("./assets/hunspell_dictionaries/es_ES/es_ES.dic", "/home/user/.local/lib/python3.8/site-packages/hunspell/dictionaries/es_ES.dic") | |
except Exception as ex: | |
print("Error copying dictionaries" + str(ex)) | |
def readQATextFile(qaTextFilePath): | |
configuration = {} | |
f = open(qaTextFilePath, 'r') | |
lines = f.readlines() | |
count = 0 | |
qCount=1 | |
q = "" | |
a = "" | |
while count < len(lines): | |
if q == "" or q == "\n": | |
q = lines[count] | |
count += 1 | |
continue | |
if a == "" or a == "\n": | |
a = lines[count] | |
count += 1 | |
if q != "" and a != "": | |
configuration["minip" + str(qCount)] = q | |
configuration["minir" + str(qCount)] = a | |
qCount += 1 | |
q = "" | |
a = "" | |
return configuration | |
def createTeacherJson(configuration): | |
""" | |
This function extracts the information about the subquestions and subanswers and puts them in the correct format. | |
Inputs: | |
config: The configured info from the api. | |
Outputs: | |
teachersJson: The generated dictionary with the subquestions. | |
""" | |
teachersJson = {"enunciado": "", "minipreguntas":[], "keywords":""} | |
#5 is the maximum number of permitted subquestions in the configuration2 page | |
for i in range(5): | |
try: | |
teachersJson["minipreguntas"].append({ | |
"minipregunta": configuration["minip" + str(i+1)], | |
"minirespuesta": configuration["minir" + str(i+1)] | |
}) | |
except: | |
break | |
return teachersJson | |
def extractZipData(ruta_zip): | |
""" | |
This function extracts the students's answers from the zip file (the one the teacher has in the task section). | |
Inputs: | |
ruta_zip: The path inherited from answersTodict | |
""" | |
#defining the path where the extracted info is to be stored | |
ruta_extraccion = create_file_path("StudentAnswers/", doctype= 1) | |
#extracting the info | |
archivo_zip = zipfile.ZipFile(ruta_zip, "r") | |
try: | |
archivo_zip.extractall(pwd=None, path=ruta_extraccion) | |
except: | |
pass | |
archivo_zip.close() | |
def removeHtmlFromString(string): | |
""" | |
This function removes the html tags from the student's response. | |
Inputs: | |
-string: The student's response | |
Outputs: | |
-new_string: The filtered response | |
""" | |
string = string.encode('utf-8', 'replace') | |
string = string.decode('utf-8', 'replace') | |
new_string = "" | |
skipChar = 0 | |
for char in string: | |
if char == "<": | |
skipChar = 1 | |
elif char == ">": | |
skipChar = 0 | |
else: | |
if not skipChar: | |
new_string = new_string+char | |
new_string = new_string.encode('utf-8', 'replace') | |
new_string = new_string.decode('utf-8', 'replace') | |
return new_string | |
def answersTodict(zip_path): | |
""" | |
This function extracts the students's answers and stacks them in one specific format so that it can be processed next. | |
Inputs: | |
ruta_zip: The path where the zip file is stored | |
Outputs: | |
studentAnswersDict: The dictionary with all the responses | |
""" | |
# path | |
remove('api/StudentAnswers') | |
#extracting the data | |
extractZipData(zip_path) | |
studentAnswersDict = [] | |
indx2=0 | |
#stacking the information of each extracted folder | |
for work_folder in os.listdir(create_file_path("StudentAnswers/", doctype= 1)): | |
print("work_folder: " + work_folder) | |
for student, indx in zip(os.listdir(create_file_path("StudentAnswers/" + work_folder, doctype= 1)), range(len(os.listdir(create_file_path("StudentAnswers/" + work_folder, doctype= 1))))): | |
student_name = student.split("(") | |
student_name = student_name[0] | |
print("student: " + str(student) + " - index: " + str(indx)) | |
try: | |
#opening the file | |
fichero1 = create_file_path("StudentAnswers/" + work_folder + "/" + student+ "/" + 'Adjuntos del envio/', doctype= 1) | |
#where the actual response is | |
if os.path.exists(fichero1): | |
fichero = open(create_file_path("StudentAnswers/" + work_folder + "/" + student + "/" + 'Adjuntos del envio/Respuesta enviada', doctype= 1), encoding='utf-8') | |
#reading it | |
lineas = fichero.readlines() | |
#removing html | |
lineas[0] = removeHtmlFromString(lineas[0]) | |
#saving it | |
studentAnswersDict.append({"respuesta":lineas[0], "hashed_id":student_name, "TableIndex":indx}) | |
elif os.path.exists(create_file_path("StudentAnswers/" + work_folder, doctype= 1)) : | |
student_name2 = work_folder.split("_") | |
student_name = student_name2[0] | |
student_id2=student_name2[1] | |
student_assingsubmission = student_name2[2] | |
student_response = student_name2[3] | |
if student_response=='onlinetext': | |
fichero = open(create_file_path("StudentAnswers/" + work_folder+"/onlinetext.html", doctype= 1), encoding='utf-8') | |
lineas = fichero.readlines() | |
#removing html | |
lineas[0] = removeHtmlFromString(lineas[0]) | |
#saving it | |
indx2+=1 | |
studentAnswersDict.append({"respuesta":lineas[0], "hashed_id":student_name, "TableIndex":indx2}) | |
#break | |
except: | |
studentAnswersDict.append({"respuesta":"", "hashed_id":student_name, "TableIndex":indx}) | |
#saving the final dictionary | |
save_json(create_file_path('ApiStudentsDict.json', doctype= 1),studentAnswersDict) | |
return studentAnswersDict | |
zipFileInput = gr.inputs.File(label="1. Selecciona el .ZIP con las respuestas de los alumnos") | |
txtFileInput = gr.inputs.File(label="2. Selecciona el .txt con las preguntas y respuestas correctas. Escriba una pregunta en una sola línea y debajo la respuesta en la línea siguiente.") | |
orthographyPercentage = gr.inputs.Textbox(label="Ortografía",lines=1, placeholder="0",default=0.1, numeric=1) | |
syntaxPercentage = gr.inputs.Textbox(label="Sintaxis",lines=1, placeholder="0",default=0.1,numeric=1) | |
semanticPercentage = gr.inputs.Textbox(label="Semántica",lines=1, placeholder="0",default=0.8, numeric=1) | |
studentsRange = gr.inputs.Textbox(label="Estudiantes a evaluar",lines=1, placeholder="Dejar vacío para evaluar todos") | |
#dataFrameOutput = gr.outputs.Dataframe(headers=["Resultados"], max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="Resultado") | |
labelOutput = gr.outputs.Label(num_top_classes=None, type="auto", label="Output") | |
labelError = gr.outputs.Label(num_top_classes=None, type="auto", label="Errores") | |
downloadExcelButton = gr.outputs.File('Resultados') | |
iface = gr.Interface(fn=Main | |
, inputs=[zipFileInput, txtFileInput, orthographyPercentage, syntaxPercentage, semanticPercentage, studentsRange] | |
, outputs=[labelError, downloadExcelButton] | |
, title = "PLENTAS" | |
) | |
#iface.launch(share = False,enable_queue=True, show_error =True, server_port= 7861) | |
iface.launch(share = False,enable_queue=True, show_error =True) |