plentas / codeScripts /rubricsOut.py
xiomarablanco's picture
Procesando respuestas de Moodle
ce84b09
raw
history blame
12.2 kB
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import copy
from codeScripts.Dependencies.SentenceTransformer2 import *
from codeScripts.utils import create_file_path, clean_words, save_json
#Done
class SemanticOutput():
"""
Class to store the semantic processing and extract results
"""
def __init__(self, settings):
self.nota_spacy = dict()
self.nota_spacy["spacy"] = dict()
self.nota_spacy["bert"] = dict()
self.nota_spacy_experimento = dict()
self.nota_spacy_experimento["spacy"] = dict()
self.nota_spacy_experimento["bert"] = dict()
self.identifyLineofResponse = dict()
self.identifyLineofResponse["spacy"] = dict()
self.identifyLineofResponse["bert"] = dict()
self.identifyLineofResponse_toexcel = []
self.notas_calculadas = dict()
self.notas_calculadas["spacy"] = dict()
self.notas_calculadas["bert"] = dict()
self.min_umbral = []
self.max_umbral = []
r= settings.UmbralesSimilitud.split(",")
for i in r:
c_w= clean_words(i)
self.min_umbral.append(float(c_w[0]+'.'+c_w[1]))
self.max_umbral.append(float(c_w[2]+'.'+c_w[3]))
self.notas_calculadas["spacy"]['Umbral ' + c_w[0]+'.'+c_w[1] + ' - ' + c_w[2]+'.'+c_w[3]] = []
self.notas_calculadas["bert"]['Umbral ' + c_w[0]+'.'+c_w[1] + ' - ' + c_w[2]+'.'+c_w[3]] = []
#variables taken from the settings
self.answersDF_json2 = dict()
self.answersDF_json2["spacy"] = dict()
self.answersDF_json2["bert"] = dict()
self.indiceMinipreguntas = settings.indice_minipreguntas
#print("AAAAAAAAAAAA")
#print(self.indiceMinipreguntas)
self.LofRespThreshold = settings.LofRespThreshold
self.indx = 1
def __createDict__(self, nota_spacy:dict(), studentID, minipregunta, similarity_type, type = 0):
if studentID not in nota_spacy[similarity_type].keys():
nota_spacy[similarity_type][studentID] = dict()
if type == 0:
nota_spacy[similarity_type][studentID][minipregunta]= []
else:
nota_spacy[similarity_type][studentID][minipregunta]= dict()
return nota_spacy
def __plotHistogram__(self, save_file, x):
"""
Generates an histogram of the given data.
Inputs:
save_file: The path where the histogram is to be generated.
x: The data to be represented.
"""
ax= sns.histplot(
data = x,
stat = "count",
kde = True,
color = "black"
)
ax.set(xlabel='Deviation', ylabel='Count')
figure = ax.get_figure()
figure.savefig(create_file_path(save_file,3))
del figure
ax.cla()
def initInforms(self, studentID, minipregunta, similarity_type):
"""
This function is for initializing the variables where data is to be stored.
Inputs:
studentID: The id of the student
minipregunta: The minipregunta that is being studied
"""
#identificar donde está la respuesta por minipreguta
self.identifyLineofResponse = self.__createDict__(self.identifyLineofResponse, studentID, minipregunta, similarity_type, 1)
#almacenar notas del evaluation process
#self.nota_spacy_experimento = self.__createDict__(self.nota_spacy_experimento, studentID, similarity_type, 1)
self.nota_spacy_experimento[similarity_type][studentID] = dict()
#Almacenar similitudes por minipregunta
self.nota_spacy = self.__createDict__(self.nota_spacy, studentID, minipregunta, similarity_type)
#separar y almacenar una a una las lineas de la respuesta
self.answersDF_json2[similarity_type][studentID] = dict()
self.answersDF_json2[similarity_type][studentID]["respuesta"] = dict()
def updateInformsBucle(self, studentID, minipregunta, response, response_label, numberOfSentences, similarity, similarity_type, isMaxSimil):
"""
This function is the previous needed step before using updateInforms. Stores the important iterative-generated information
Inputs:
-studentID: The id of the student
-minipregunta: The minipregunta that is being studied
-response: The student's response
-response_label: The generated label that indicates the sentence number of the extracted response in the text.
-numberOfSentences: The number of splitted sentences.
-similarity: The obtained similarity score.
-isMaxSimil: If the similarity score is the highest obtained at the moment or not.
"""
#Storing the similarity score obtained for only one sentence
if numberOfSentences == 1:
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)] = dict()
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)]["Similitud"] = similarity
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)]["Frase"] = response
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)]["Lineas"] = response_label
self.answersDF_json2[similarity_type][studentID]["respuesta"][self.indx] = response
self.indx+=1
else:
self.indx = 1
#storing the maximum similarity for each set of sentences length
if isMaxSimil:
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)] = dict()
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)]["MaxSimilitud"] = similarity
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)]["Frase"] = response
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)]["Lineas"] = response_label
#storing the similarity in every case
self.nota_spacy[similarity_type][studentID][minipregunta].append([response, None, None] if response == "" else [response, similarity, response_label])
def updateInforms(self, studentID, umbralL, umbralH, calculatedMark, similarity_type, response = ""):
"""
This function is to store the obtained results from the processing of one response.
Inputs:
-studentID: The id of the student
-umbralL: The fixed low threshold (config json)
-umbralH: The fixed high threshold (config json)
-calculatedMark: The calculated mark.
-response: The student's response
"""
#print("ZZZZZ")
#print(similarity_type)
#storing calculated marks
print("indiceMinipreguntas: " + str(self.indiceMinipreguntas))
self.notas_calculadas[similarity_type]['Umbral ' + str(umbralL) + ' - ' + str(umbralH)].append(0 if response == "" else calculatedMark/len(self.indiceMinipreguntas))
#storing where the model thought the answer was
for minipregunta in self.indiceMinipreguntas:
#print("EEEEE")
#print(self.identifyLineofResponse)
aux = copy.deepcopy(self.identifyLineofResponse)
for indx in aux[similarity_type][studentID][minipregunta].keys():
if abs(self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"] - self.nota_spacy_experimento[similarity_type][studentID]["1"]["MaxSimilitud"]) > 0.075:
del self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]
#Getting the number of the guess
if response == "":
self.identifyLineofResponse_toexcel.append([minipregunta, ""])
else:
max_n = -999999
indx_queue = 0
queue = []
highlightedrows = ""
highlightedmarks = ""
for iter in self.identifyLineofResponse[similarity_type][studentID][minipregunta].keys():
for indx in self.identifyLineofResponse[similarity_type][studentID][minipregunta].keys():
if self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"] > max_n and not indx in queue and self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"]>self.LofRespThreshold:
max_n = self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"]
indx_queue = indx
queue.append(indx_queue)
highlightedrows = highlightedrows + str(indx_queue) + " "
highlightedmarks = highlightedmarks + str(max_n) + " "
max_n = -999999
indx_queue = 0
self.identifyLineofResponse_toexcel.append([minipregunta, highlightedrows, highlightedmarks])
highlightedrows = ""
highlightedmarks = ""
queue = []
def saveSimilarityResults(self, settings, similarity_type):
"""
Saves the recopiled data in the corresponding format and path differentiating the types of semantic calculation.
Inputs:
-settings: system settings.
-similarity_type: "spacy" if similarity is being calculated from Spacy (if it is not, bert is selected)
"""
savePrefix = "Spacy - " if similarity_type == "spacy" else str(settings.modelr) + str(settings.epochr) + " - "
#previous name - "AnalisisSemantico.json"
save_json(create_file_path(savePrefix + "SimilitudPorConjunto.json",2), self.nota_spacy[similarity_type])
save_json(create_file_path(savePrefix + "MaxSimilitudPorConjunto.json",2), self.nota_spacy_experimento[similarity_type])
save_json(create_file_path(savePrefix + "LineaRespuesta.json",2), self.identifyLineofResponse[similarity_type])
save_json(create_file_path(savePrefix + "RespuestaSeparadaPorFrases.json",2), self.answersDF_json2[similarity_type])
Notasdf = pd.DataFrame()
for intervaloUmbral in self.notas_calculadas[similarity_type]:
Notasdf[intervaloUmbral] = self.notas_calculadas[similarity_type][intervaloUmbral]
Notasdf.to_excel(create_file_path(savePrefix +'NotasCalculadas.xlsx',2), sheet_name='notas')
#self.__plotHistogram__(savePrefix + "HistogramaNotasGeneradas.png", self.notas_calculadas[similarity_type])
class SintacticOutput():
"""
Class to store the sintactic processing
"""
def __init__(self):
self.leg_FH =[]
self.leg_mu = []
def saveLegibilityResults(self):
"""
Saves the recopiled data in the corresponding format.
"""
save_json(create_file_path("FH-Readability.json",2), self.leg_FH, False)
save_json(create_file_path("mu-Readability.json",2), self.leg_mu, False)
x = []
for i in range(len(self.leg_FH)):
x.append(i)
plt.figure(figsize=(15,7))
plt.plot(x, self.leg_FH, label = "FH", color = (0.1,0.1,0.1))
plt.plot(x, self.leg_mu, '--', label = "mu", color = (0.5,0.5,0.5))
plt.xlabel("Student")
plt.ylabel("Legibility (0-100)")
plt.legend(loc=1)
plt.title("FH vs mu")
plt.xticks(rotation=-45)
plt.grid()
plt.savefig(create_file_path("Img_FHvsMu.png",3))
plt.cla()
class OrtographicOutput():
"""
Class to store the ortographic processing
"""
def __init__(self):
self.notaOrtografia = []
self.mistakes = []
self.number_mistakes = []
def saveOrtographicResults(self):
"""
Saves the ortographic generated marks.
"""
save_json(create_file_path("NotasOrtografia.json",2), self.notaOrtografia, False)