File size: 13,218 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import os
import tempfile
import unittest
import warnings

from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError

from transformers import AutoConfig, GenerationConfig
from transformers.generation import GenerationMode
from transformers.testing_utils import TOKEN, USER, is_staging_test


class GenerationConfigTest(unittest.TestCase):
    @parameterized.expand([(None,), ("foo.json",)])
    def test_save_load_config(self, config_name):
        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
            bad_words_ids=[[1, 2, 3], [4, 5]],
        )
        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(tmp_dir, config_name=config_name)
            loaded_config = GenerationConfig.from_pretrained(tmp_dir, config_name=config_name)

        # Checks parameters that were specified
        self.assertEqual(loaded_config.do_sample, True)
        self.assertEqual(loaded_config.temperature, 0.7)
        self.assertEqual(loaded_config.length_penalty, 1.0)
        self.assertEqual(loaded_config.bad_words_ids, [[1, 2, 3], [4, 5]])

        # Checks parameters that were not specified (defaults)
        self.assertEqual(loaded_config.top_k, 50)
        self.assertEqual(loaded_config.max_length, 20)
        self.assertEqual(loaded_config.max_time, None)

    def test_from_model_config(self):
        model_config = AutoConfig.from_pretrained("openai-community/gpt2")
        generation_config_from_model = GenerationConfig.from_model_config(model_config)
        default_generation_config = GenerationConfig()

        # The generation config has loaded a few non-default parameters from the model config
        self.assertNotEqual(generation_config_from_model, default_generation_config)

        # One of those parameters is eos_token_id -- check if it matches
        self.assertNotEqual(generation_config_from_model.eos_token_id, default_generation_config.eos_token_id)
        self.assertEqual(generation_config_from_model.eos_token_id, model_config.eos_token_id)

    def test_update(self):
        generation_config = GenerationConfig()
        update_kwargs = {
            "max_new_tokens": 1024,
            "foo": "bar",
        }
        update_kwargs_copy = copy.deepcopy(update_kwargs)
        unused_kwargs = generation_config.update(**update_kwargs)

        # update_kwargs was not modified (no side effects)
        self.assertEqual(update_kwargs, update_kwargs_copy)

        # update_kwargs was used to update the config on valid attributes
        self.assertEqual(generation_config.max_new_tokens, 1024)

        # `.update()` returns a dictionary of unused kwargs
        self.assertEqual(unused_kwargs, {"foo": "bar"})

    def test_initialize_new_kwargs(self):
        generation_config = GenerationConfig()
        generation_config.foo = "bar"

        with tempfile.TemporaryDirectory("test-generation-config") as tmp_dir:
            generation_config.save_pretrained(tmp_dir)

            new_config = GenerationConfig.from_pretrained(tmp_dir)
        # update_kwargs was used to update the config on valid attributes
        self.assertEqual(new_config.foo, "bar")

        generation_config = GenerationConfig.from_model_config(new_config)
        assert not hasattr(generation_config, "foo")  # no new kwargs should be initialized if from config

    def test_kwarg_init(self):
        """Tests that we can overwrite attributes at `from_pretrained` time."""
        default_config = GenerationConfig()
        self.assertEqual(default_config.temperature, 1.0)
        self.assertEqual(default_config.do_sample, False)
        self.assertEqual(default_config.num_beams, 1)

        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
            bad_words_ids=[[1, 2, 3], [4, 5]],
        )
        self.assertEqual(config.temperature, 0.7)
        self.assertEqual(config.do_sample, True)
        self.assertEqual(config.num_beams, 1)

        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(tmp_dir)
            loaded_config = GenerationConfig.from_pretrained(tmp_dir, temperature=1.0)

        self.assertEqual(loaded_config.temperature, 1.0)
        self.assertEqual(loaded_config.do_sample, True)
        self.assertEqual(loaded_config.num_beams, 1)  # default value

    def test_validate(self):
        """
        Tests that the `validate` method is working as expected. Note that `validate` is called at initialization time
        """
        # A correct configuration will not throw any warning
        with warnings.catch_warnings(record=True) as captured_warnings:
            GenerationConfig()
        self.assertEqual(len(captured_warnings), 0)

        # Inconsequent but technically wrong configuration will throw a warning (e.g. setting sampling
        # parameters with `do_sample=False`). May be escalated to an error in the future.
        with warnings.catch_warnings(record=True) as captured_warnings:
            GenerationConfig(do_sample=False, temperature=0.5)
        self.assertEqual(len(captured_warnings), 1)

        # Expanding on the case above, we can update a bad configuration to get rid of the warning. Ideally,
        # that is done by unsetting the parameter (i.e. setting it to None)
        generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5)
        with warnings.catch_warnings(record=True) as captured_warnings:
            # BAD - 0.9 means it is still set, we should warn
            generation_config_bad_temperature.update(temperature=0.9)
        self.assertEqual(len(captured_warnings), 1)
        generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5)
        with warnings.catch_warnings(record=True) as captured_warnings:
            # CORNER CASE - 1.0 is the default, we can't detect whether it is set by the user or not, we shouldn't warn
            generation_config_bad_temperature.update(temperature=1.0)
        self.assertEqual(len(captured_warnings), 0)
        generation_config_bad_temperature = GenerationConfig(do_sample=False, temperature=0.5)
        with warnings.catch_warnings(record=True) as captured_warnings:
            # OK - None means it is unset, nothing to warn about
            generation_config_bad_temperature.update(temperature=None)
        self.assertEqual(len(captured_warnings), 0)

        # Impossible sets of contraints/parameters will raise an exception
        with self.assertRaises(ValueError):
            GenerationConfig(do_sample=False, num_beams=1, num_return_sequences=2)
        with self.assertRaises(ValueError):
            # dummy constraint
            GenerationConfig(do_sample=True, num_beams=2, constraints=["dummy"])
        with self.assertRaises(ValueError):
            GenerationConfig(do_sample=True, num_beams=2, force_words_ids=[[[1, 2, 3]]])

        # Passing `generate()`-only flags to `validate` will raise an exception
        with self.assertRaises(ValueError):
            GenerationConfig(logits_processor="foo")

        # Model-specific parameters will NOT raise an exception or a warning
        with warnings.catch_warnings(record=True) as captured_warnings:
            GenerationConfig(foo="bar")
        self.assertEqual(len(captured_warnings), 0)

    def test_refuse_to_save(self):
        """Tests that we refuse to save a generation config that fails validation."""

        # setting the temperature alone is invalid, as we also need to set do_sample to True -> throws a warning that
        # is caught, doesn't save, and raises an exception
        config = GenerationConfig()
        config.temperature = 0.5
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(ValueError) as exc:
                config.save_pretrained(tmp_dir)
            self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
            self.assertTrue(len(os.listdir(tmp_dir)) == 0)

        # greedy decoding throws an exception if we try to return multiple sequences -> throws an exception that is
        # caught, doesn't save, and raises a warning
        config = GenerationConfig()
        config.num_return_sequences = 2
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(ValueError) as exc:
                config.save_pretrained(tmp_dir)
            self.assertTrue("Fix these issues to save the configuration." in str(exc.exception))
            self.assertTrue(len(os.listdir(tmp_dir)) == 0)

        # final check: no warnings/exceptions thrown if it is correct, and file is saved
        config = GenerationConfig()
        with tempfile.TemporaryDirectory() as tmp_dir:
            with warnings.catch_warnings(record=True) as captured_warnings:
                config.save_pretrained(tmp_dir)
            self.assertEqual(len(captured_warnings), 0)
            self.assertTrue(len(os.listdir(tmp_dir)) == 1)

    def test_generation_mode(self):
        """Tests that the `get_generation_mode` method is working as expected."""
        config = GenerationConfig()
        self.assertEqual(config.get_generation_mode(), GenerationMode.GREEDY_SEARCH)

        config = GenerationConfig(do_sample=True)
        self.assertEqual(config.get_generation_mode(), GenerationMode.SAMPLE)

        config = GenerationConfig(num_beams=2)
        self.assertEqual(config.get_generation_mode(), GenerationMode.BEAM_SEARCH)

        config = GenerationConfig(top_k=10, do_sample=False, penalty_alpha=0.6)
        self.assertEqual(config.get_generation_mode(), GenerationMode.CONTRASTIVE_SEARCH)

        config = GenerationConfig()
        self.assertEqual(config.get_generation_mode(assistant_model="foo"), GenerationMode.ASSISTED_GENERATION)


@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)

    @classmethod
    def tearDownClass(cls):
        try:
            delete_repo(token=cls._token, repo_id="test-generation-config")
        except HTTPError:
            pass

        try:
            delete_repo(token=cls._token, repo_id="valid_org/test-generation-config-org")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
        )
        config.push_to_hub("test-generation-config", token=self._token)

        new_config = GenerationConfig.from_pretrained(f"{USER}/test-generation-config")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-generation-config")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(tmp_dir, repo_id="test-generation-config", push_to_hub=True, token=self._token)

        new_config = GenerationConfig.from_pretrained(f"{USER}/test-generation-config")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

    def test_push_to_hub_in_organization(self):
        config = GenerationConfig(
            do_sample=True,
            temperature=0.7,
            length_penalty=1.0,
        )
        config.push_to_hub("valid_org/test-generation-config-org", token=self._token)

        new_config = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-generation-config-org")

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            config.save_pretrained(
                tmp_dir, repo_id="valid_org/test-generation-config-org", push_to_hub=True, token=self._token
            )

        new_config = GenerationConfig.from_pretrained("valid_org/test-generation-config-org")
        for k, v in config.to_dict().items():
            if k != "transformers_version":
                self.assertEqual(v, getattr(new_config, k))