File size: 7,528 Bytes
b37c16f 1eae062 b37c16f 177a926 b37c16f 177a926 b37c16f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import platform
import sys
import time
import boto3
from botocore.exceptions import NoCredentialsError
import logging
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# device = "cuda"
# has_gpu = torch.cuda.is_available()
# device = "cuda" if has_gpu else "cpu"
# print(f"Python Platform: {platform.platform()}")
# print(f"Python Version: {sys.version}")
# print(f"PyTorch Version: {torch.__version__}")
# print("GPU Availability:", "Available" if has_gpu else "Not Available")
# print(f"Target Device: {device}")
# if has_gpu:
# print(f"GPU Type: {torch.cuda.get_device_name(0)}")
# print(f"CUDA Version: {torch.version.cuda}")
# else:
# print("CUDA is not available.")
def download_xmad_file():
s3 = boto3.client('s3',
aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID'),
aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY'))
# Create the .codebooks directory if it doesn't exist
codebooks_dir = '.codebooks'
os.makedirs(codebooks_dir, exist_ok=True)
temp_file_path = os.path.join(codebooks_dir, 'llama-3-8b-instruct_1bit.xmad')
try:
# Download the file to the .codebooks directory
s3.download_file('xmad-quantized-models', 'llama-3-8b-instruct_1bit.xmad', temp_file_path)
print("Download Successful")
# Restrict permissions on the .codebooks directory
os.chmod(codebooks_dir, 0o700)
except NoCredentialsError:
print("Credentials not available")
download_xmad_file()
def get_gpu_memory():
return torch.cuda.memory_allocated() / 1024 / 1024 # Convert to MiB
class TorchTracemalloc:
def __init__(self):
self.begin = 0
self.peak = 0
def __enter__(self):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
self.begin = get_gpu_memory()
return self
def __exit__(self, *exc):
torch.cuda.synchronize()
self.peak = torch.cuda.max_memory_allocated() / 1024 / 1024
def consumed(self):
return self.peak - self.begin
def load_model_and_tokenizer():
model_name = "NousResearch/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_tokens = {"pad_token": "<PAD>"}
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name)
setattr(
config, "quantizer_path", ".codebooks/llama-3-8b-instruct_1bit.xmad"
)
setattr(config, "window_length", 32)
# model = AutoModelForCausalLM.from_pretrained(
# model_name, config=config, torch_dtype=torch.float16
# ).to(device)
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, torch_dtype=torch.float16, device_map="auto"
)
print(f"Quantizer path in model config: {model.config.quantizer_path}")
logging.info(f"Quantizer path in model config: {model.config.quantizer_path}")
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
print(
"WARNING: Resizing the embedding matrix to match the tokenizer vocab size."
)
model.resize_token_embeddings(len(tokenizer))
tokenizer.padding_side = "left"
model.config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
model, tokenizer = load_model_and_tokenizer()
def process_dialog(message, history):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
dialog = [
{"role": "user" if i % 2 == 0 else "assistant", "content": msg}
for i, (msg, _) in enumerate(history)
]
dialog.append({"role": "user", "content": message})
prompt = tokenizer.apply_chat_template(
dialog, tokenize=False, add_generation_prompt=True
)
tokenized_input_prompt_ids = tokenizer(
prompt, return_tensors="pt"
).input_ids.to(model.device)
start_time = time.time()
with TorchTracemalloc() as tracemalloc:
with torch.no_grad():
output = model.generate(
tokenized_input_prompt_ids,
# max_new_tokens=512,
temperature=0.4,
do_sample=True,
eos_token_id=terminators,
pad_token_id=tokenizer.pad_token_id,
)
end_time = time.time()
response = output[0][tokenized_input_prompt_ids.shape[-1] :]
cleaned_response = tokenizer.decode(
response,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
generation_time = end_time - start_time
gpu_memory = tracemalloc.consumed()
return cleaned_response, generation_time, gpu_memory
def chatbot_response(message, history):
response, generation_time, gpu_memory = process_dialog(message, history)
metrics = f"\n\n---\n\n **Metrics**\t*Answer Generation Time:* `{generation_time:.2f} sec`\t*GPU Memory Consumption:* `{gpu_memory:.2f} MiB`\n\n"
return response + metrics
def process_dialog_streaming(message, history):
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
dialog = [
{"role": "user" if i % 2 == 0 else "assistant", "content": msg}
for i, (msg, _) in enumerate(history)
]
dialog.append({"role": "user", "content": message})
prompt = tokenizer.apply_chat_template(
dialog, tokenize=False, add_generation_prompt=True
)
tokenized_input_prompt_ids = tokenizer(
prompt, return_tensors="pt"
).input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs=tokenized_input_prompt_ids,
streamer=streamer,
max_new_tokens=512,
temperature=0.4,
do_sample=True,
eos_token_id=terminators,
pad_token_id=tokenizer.pad_token_id,
)
start_time = time.time()
total_tokens = 0
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
total_tokens += 1
current_time = time.time()
elapsed_time = current_time - start_time
tokens_per_second = total_tokens / elapsed_time if elapsed_time > 0 else 0
print(f"Tokens per second: {tokens_per_second:.2f}", end="\r")
yield generated_text, elapsed_time, tokens_per_second
thread.join()
def chatbot_response_streaming(message, history):
for response, generation_time, tokens_per_second in process_dialog_streaming(message, history):
metrics = f"\n\n---\n\n **Metrics**\t*Answer Generation Time:* `{generation_time:.2f} sec`\t*Tokens per Second:* `{tokens_per_second:.2f}`\n\n"
yield response + metrics
demo = gr.ChatInterface(
fn=chatbot_response_streaming,
examples=["Hello", "How are you?", "Tell me a joke"],
title="Chat with xMAD's: 1-bit-Llama-3-8B-Instruct Model",
description="Contact support@xmad.ai to set up a demo",
)
if __name__ == "__main__":
username = os.getenv("AUTH_USERNAME")
password = os.getenv("AUTH_PASSWORD")
demo.launch(auth=(username, password))
# demo.launch()
|