|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import tempfile |
|
from pathlib import Path |
|
|
|
from transformers import FSMTConfig, FSMTForConditionalGeneration, FSMTTokenizer |
|
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES |
|
|
|
|
|
mname_tiny = "tiny-wmt19-en-ru" |
|
|
|
|
|
|
|
|
|
vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] |
|
vocab_tokens = dict(zip(vocab, range(len(vocab)))) |
|
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
build_dir = Path(tmpdirname) |
|
src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] |
|
tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] |
|
merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"] |
|
with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) |
|
with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) |
|
with open(merges_file, "w") as fp : fp.write("\n".join(merges)) |
|
|
|
tokenizer = FSMTTokenizer( |
|
langs=["en", "ru"], |
|
src_vocab_size = len(vocab), |
|
tgt_vocab_size = len(vocab), |
|
src_vocab_file=src_vocab_file, |
|
tgt_vocab_file=tgt_vocab_file, |
|
merges_file=merges_file, |
|
) |
|
|
|
config = FSMTConfig( |
|
langs=['ru', 'en'], |
|
src_vocab_size=1000, tgt_vocab_size=1000, |
|
d_model=4, |
|
encoder_layers=1, decoder_layers=1, |
|
encoder_ffn_dim=4, decoder_ffn_dim=4, |
|
encoder_attention_heads=1, decoder_attention_heads=1, |
|
) |
|
|
|
tiny_model = FSMTForConditionalGeneration(config) |
|
print(f"num of params {tiny_model.num_parameters()}") |
|
|
|
|
|
batch = tokenizer(["Making tiny model"], return_tensors="pt") |
|
outputs = tiny_model(**batch) |
|
|
|
print("test output:", len(outputs.logits[0])) |
|
|
|
|
|
tiny_model.half() |
|
tiny_model.save_pretrained(mname_tiny) |
|
tokenizer.save_pretrained(mname_tiny) |
|
|
|
print(f"Generated {mname_tiny}") |
|
|
|
|
|
|
|
|