|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import time |
|
import unittest |
|
|
|
from transformers import AutoTokenizer, is_torch_available |
|
from transformers.testing_utils import require_torch, torch_device |
|
|
|
from ..test_modeling_common import ids_tensor |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers.generation import ( |
|
EosTokenCriteria, |
|
MaxLengthCriteria, |
|
MaxNewTokensCriteria, |
|
MaxTimeCriteria, |
|
StoppingCriteriaList, |
|
StopStringCriteria, |
|
validate_stopping_criteria, |
|
) |
|
|
|
|
|
@require_torch |
|
class StoppingCriteriaTestCase(unittest.TestCase): |
|
def _get_tensors(self, length): |
|
batch_size = 3 |
|
vocab_size = 250 |
|
|
|
input_ids = ids_tensor((batch_size, length), vocab_size) |
|
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length |
|
return input_ids, scores |
|
|
|
def test_list_criteria(self): |
|
input_ids, scores = self._get_tensors(5) |
|
|
|
criteria = StoppingCriteriaList( |
|
[ |
|
MaxLengthCriteria(max_length=10), |
|
MaxTimeCriteria(max_time=0.1), |
|
] |
|
) |
|
|
|
self.assertFalse(all(criteria(input_ids, scores))) |
|
|
|
input_ids, scores = self._get_tensors(9) |
|
self.assertFalse(all(criteria(input_ids, scores))) |
|
|
|
input_ids, scores = self._get_tensors(10) |
|
self.assertTrue(all(criteria(input_ids, scores))) |
|
|
|
def test_max_length_criteria(self): |
|
criteria = MaxLengthCriteria(max_length=10) |
|
|
|
input_ids, scores = self._get_tensors(5) |
|
self.assertFalse(all(criteria(input_ids, scores))) |
|
|
|
input_ids, scores = self._get_tensors(9) |
|
self.assertFalse(all(criteria(input_ids, scores))) |
|
|
|
input_ids, scores = self._get_tensors(10) |
|
self.assertTrue(all(criteria(input_ids, scores))) |
|
|
|
def test_max_new_tokens_criteria(self): |
|
criteria = MaxNewTokensCriteria(start_length=5, max_new_tokens=5) |
|
|
|
input_ids, scores = self._get_tensors(5) |
|
self.assertFalse(all(criteria(input_ids, scores))) |
|
|
|
input_ids, scores = self._get_tensors(9) |
|
self.assertFalse(all(criteria(input_ids, scores))) |
|
|
|
input_ids, scores = self._get_tensors(10) |
|
self.assertTrue(all(criteria(input_ids, scores))) |
|
|
|
criteria_list = StoppingCriteriaList([criteria]) |
|
self.assertEqual(criteria_list.max_length, 10) |
|
|
|
def test_max_time_criteria(self): |
|
input_ids, scores = self._get_tensors(5) |
|
|
|
criteria = MaxTimeCriteria(max_time=0.1) |
|
self.assertFalse(all(criteria(input_ids, scores))) |
|
|
|
criteria = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2) |
|
self.assertTrue(all(criteria(input_ids, scores))) |
|
|
|
def test_eos_token_criteria(self): |
|
criteria = EosTokenCriteria(eos_token_id=0) |
|
|
|
input_ids, scores = self._get_tensors(5) |
|
input_ids[:, -1] = 0 |
|
self.assertTrue(all(criteria(input_ids, scores))) |
|
|
|
input_ids, scores = self._get_tensors(5) |
|
input_ids[:2, -1] = 0 |
|
input_ids[2, -1] = 1 |
|
self.assertListEqual(criteria(input_ids, scores).tolist(), [True, True, False]) |
|
|
|
input_ids, scores = self._get_tensors(5) |
|
input_ids[:, -1] = 1 |
|
self.assertListEqual(criteria(input_ids, scores).tolist(), [False, False, False]) |
|
|
|
def test_validate_stopping_criteria(self): |
|
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 10) |
|
|
|
with self.assertWarns(UserWarning): |
|
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 11) |
|
|
|
stopping_criteria = validate_stopping_criteria(StoppingCriteriaList(), 11) |
|
|
|
self.assertEqual(len(stopping_criteria), 1) |
|
|
|
def test_stop_string_criteria(self): |
|
true_strings = [ |
|
"<|im_start|><|im_end|>", |
|
"<|im_start|><|im_end|<|im_end|>", |
|
">><|im_start|>>stop", |
|
"stop", |
|
"e nd", |
|
] |
|
false_strings = [ |
|
"<|im_start|><|im_end|", |
|
"<|im_start|><|im_end|<|im_end|", |
|
"<|im_end|><|im_start|>", |
|
"<|im_end|<>stop<|im_end|", |
|
"end", |
|
"en d", |
|
"eNd", |
|
"<|im_end|", |
|
"|im_end|>", |
|
"s", |
|
] |
|
stop_strings = ["<|im_end|>", "stop", "e nd"] |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
tokenizer.padding_side = "left" |
|
true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False) |
|
false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False) |
|
|
|
scores = None |
|
criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings) |
|
for i in range(len(true_strings)): |
|
self.assertTrue(criteria(true_input_ids["input_ids"][i : i + 1], scores)) |
|
for i in range(len(false_strings)): |
|
self.assertFalse(criteria(false_input_ids["input_ids"][i : i + 1], scores)) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/dolphin-2.5-mixtral-8x7b") |
|
tokenizer.padding_side = "left" |
|
true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False) |
|
false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False) |
|
|
|
criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings) |
|
for i in range(len(true_strings)): |
|
self.assertTrue(criteria(true_input_ids["input_ids"][i : i + 1], scores)) |
|
for i in range(len(false_strings)): |
|
self.assertFalse(criteria(false_input_ids["input_ids"][i : i + 1], scores)) |
|
|
|
def test_stop_string_matching_positions(self): |
|
stop_string = "stop" |
|
token_list = ["last", "top", "topper", "s", "p"] |
|
token_indices = list(range(len(token_list))) |
|
all_token_valid_positions, all_token_end_overlaps = StopStringCriteria._stop_string_get_matching_positions( |
|
token_list=token_list, token_indices=token_indices, stop_strings=[stop_string] |
|
) |
|
valid_positions = { |
|
token_list[idx]: positions for idx, positions in all_token_valid_positions[stop_string].items() |
|
} |
|
end_overlaps = {token_list[idx]: overlaps for idx, overlaps in all_token_end_overlaps[stop_string].items()} |
|
self.assertEqual(valid_positions, {"s": [3], "last": [2]}) |
|
self.assertEqual(end_overlaps, {"top": [3], "topper": [3], "p": [1]}) |
|
|
|
def test_stop_string_embedding_vecs(self): |
|
stop_string = "stop" |
|
token_list = ["last", "top", "topper", "s", "p"] |
|
token_indices = list(range(len(token_list))) |
|
embedding_vec, max_valid_positions, max_valid_end_lens = StopStringCriteria._stop_string_create_embedding_vec( |
|
token_list=token_list, token_indices=token_indices, stop_strings=[stop_string] |
|
) |
|
|
|
|
|
valid_positions = embedding_vec[:, 0].tolist() |
|
self.assertEqual(valid_positions, [2, -1, -1, 3, -1]) |
|
|
|
|
|
end_overlaps = embedding_vec[:, 1].tolist() |
|
self.assertEqual(end_overlaps, [-1, 3, 3, -1, 1]) |
|
|
|
|
|
token_lengths = embedding_vec[:, 2].tolist() |
|
self.assertEqual(token_lengths, [len(token) for token in token_list]) |
|
|
|
def test_criterias_per_row(self): |
|
text = "They completed the challenging puzzle, revealing the hidden image at the end" |
|
stop_strings = ["end"] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False) |
|
|
|
scores = None |
|
criteria = StoppingCriteriaList( |
|
[ |
|
MaxLengthCriteria(max_length=20), |
|
StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings), |
|
] |
|
) |
|
|
|
|
|
self.assertTrue(criteria(inputs["input_ids"], scores)) |
|
|
|
|
|
self.assertFalse(criteria(inputs["input_ids"][:, :-1], scores)) |
|
|
|
def test_criterias_per_row_batched(self): |
|
text = [ |
|
"They completed the challenging puzzle, revealing the hidden image at the end", |
|
"Today a dragon flew over France", |
|
"The aroma of freshly baked pizza filled the kitchen", |
|
] |
|
stop_strings = ["end"] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
tokenizer.padding_side = "left" |
|
inputs = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False) |
|
|
|
scores = None |
|
criteria = StoppingCriteriaList( |
|
[ |
|
MaxLengthCriteria(max_length=20), |
|
StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings), |
|
] |
|
) |
|
|
|
|
|
self.assertListEqual(criteria(inputs["input_ids"], scores).tolist(), [True, False, False]) |
|
|
|
|
|
self.assertListEqual(criteria(inputs["input_ids"][:, :-1], scores).tolist(), [False, False, False]) |
|
|