|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import inspect |
|
import tempfile |
|
|
|
from transformers.testing_utils import require_torch, torch_device |
|
from transformers.utils.backbone_utils import BackboneType |
|
|
|
|
|
@require_torch |
|
class BackboneTesterMixin: |
|
all_model_classes = () |
|
has_attentions = True |
|
|
|
def test_config(self): |
|
config_class = self.config_class |
|
|
|
|
|
config = config_class() |
|
self.assertIsNotNone(config) |
|
num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers |
|
expected_stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_stages + 1)] |
|
self.assertEqual(config.stage_names, expected_stage_names) |
|
self.assertTrue(set(config.out_features).issubset(set(config.stage_names))) |
|
|
|
|
|
|
|
config = config_class(out_features=None, out_indices=None) |
|
self.assertEqual(config.out_features, [config.stage_names[-1]]) |
|
self.assertEqual(config.out_indices, [len(config.stage_names) - 1]) |
|
|
|
|
|
config = config_class(out_features=["stem", "stage1"], out_indices=[0, 1]) |
|
self.assertEqual(config.out_features, ["stem", "stage1"]) |
|
self.assertEqual(config.out_indices, [0, 1]) |
|
|
|
|
|
config = config_class(out_features=["stage1", "stage3"]) |
|
self.assertEqual(config.out_features, ["stage1", "stage3"]) |
|
self.assertEqual(config.out_indices, [1, 3]) |
|
|
|
|
|
config = config_class(out_indices=[0, 2]) |
|
self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]]) |
|
self.assertEqual(config.out_indices, [0, 2]) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2]) |
|
|
|
def test_forward_signature(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
signature = inspect.signature(model.forward) |
|
|
|
arg_names = [*signature.parameters.keys()] |
|
expected_arg_names = ["pixel_values"] |
|
self.assertListEqual(arg_names[:1], expected_arg_names) |
|
|
|
def test_config_save_pretrained(self): |
|
config_class = self.config_class |
|
config_first = config_class(out_indices=[0, 1, 2, 3]) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
config_first.save_pretrained(tmpdirname) |
|
config_second = self.config_class.from_pretrained(tmpdirname) |
|
|
|
self.assertEqual(config_second.to_dict(), config_first.to_dict()) |
|
|
|
def test_channels(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
self.assertEqual(len(model.channels), len(config.out_features)) |
|
num_features = model.num_features |
|
out_indices = [config.stage_names.index(feat) for feat in config.out_features] |
|
out_channels = [num_features[idx] for idx in out_indices] |
|
self.assertListEqual(model.channels, out_channels) |
|
|
|
new_config = copy.deepcopy(config) |
|
new_config.out_features = None |
|
model = model_class(new_config) |
|
self.assertEqual(len(model.channels), 1) |
|
self.assertListEqual(model.channels, [num_features[-1]]) |
|
|
|
new_config = copy.deepcopy(config) |
|
new_config.out_indices = None |
|
model = model_class(new_config) |
|
self.assertEqual(len(model.channels), 1) |
|
self.assertListEqual(model.channels, [num_features[-1]]) |
|
|
|
def test_create_from_modified_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(**inputs_dict) |
|
|
|
self.assertEqual(len(result.feature_maps), len(config.out_features)) |
|
self.assertEqual(len(model.channels), len(config.out_features)) |
|
self.assertEqual(len(result.feature_maps), len(config.out_indices)) |
|
self.assertEqual(len(model.channels), len(config.out_indices)) |
|
|
|
|
|
modified_config = copy.deepcopy(config) |
|
modified_config.out_features = None |
|
model = model_class(modified_config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(**inputs_dict) |
|
|
|
self.assertEqual(len(result.feature_maps), 1) |
|
self.assertEqual(len(model.channels), 1) |
|
|
|
modified_config = copy.deepcopy(config) |
|
modified_config.out_indices = None |
|
model = model_class(modified_config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(**inputs_dict) |
|
|
|
self.assertEqual(len(result.feature_maps), 1) |
|
self.assertEqual(len(model.channels), 1) |
|
|
|
|
|
modified_config = copy.deepcopy(config) |
|
modified_config.use_pretrained_backbone = False |
|
model = model_class(modified_config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(**inputs_dict) |
|
|
|
def test_backbone_common_attributes(self): |
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common() |
|
|
|
for backbone_class in self.all_model_classes: |
|
backbone = backbone_class(config) |
|
|
|
self.assertTrue(hasattr(backbone, "backbone_type")) |
|
self.assertTrue(hasattr(backbone, "stage_names")) |
|
self.assertTrue(hasattr(backbone, "num_features")) |
|
self.assertTrue(hasattr(backbone, "out_indices")) |
|
self.assertTrue(hasattr(backbone, "out_features")) |
|
self.assertTrue(hasattr(backbone, "out_feature_channels")) |
|
self.assertTrue(hasattr(backbone, "channels")) |
|
|
|
self.assertIsInstance(backbone.backbone_type, BackboneType) |
|
|
|
self.assertIsNotNone(backbone.num_features) |
|
self.assertTrue(len(backbone.channels) == len(backbone.out_indices)) |
|
self.assertTrue(len(backbone.stage_names) == len(backbone.num_features)) |
|
self.assertTrue(len(backbone.channels) <= len(backbone.num_features)) |
|
self.assertTrue(len(backbone.out_feature_channels) == len(backbone.stage_names)) |
|
|
|
def test_backbone_outputs(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
batch_size = inputs_dict["pixel_values"].shape[0] |
|
|
|
for backbone_class in self.all_model_classes: |
|
backbone = backbone_class(config) |
|
backbone.to(torch_device) |
|
backbone.eval() |
|
|
|
outputs = backbone(**inputs_dict) |
|
|
|
|
|
self.assertIsInstance(outputs.feature_maps, tuple) |
|
self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) |
|
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): |
|
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) |
|
self.assertIsNone(outputs.hidden_states) |
|
self.assertIsNone(outputs.attentions) |
|
|
|
|
|
outputs = backbone(**inputs_dict, output_hidden_states=True) |
|
self.assertIsNotNone(outputs.hidden_states) |
|
self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names)) |
|
for hidden_state, n_channels in zip(outputs.hidden_states, backbone.channels): |
|
self.assertTrue(hidden_state.shape[:2], (batch_size, n_channels)) |
|
|
|
|
|
if self.has_attentions: |
|
outputs = backbone(**inputs_dict, output_attentions=True) |
|
self.assertIsNotNone(outputs.attentions) |
|
|
|
def test_backbone_stage_selection(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
batch_size = inputs_dict["pixel_values"].shape[0] |
|
|
|
for backbone_class in self.all_model_classes: |
|
config.out_indices = [-2, -1] |
|
backbone = backbone_class(config) |
|
backbone.to(torch_device) |
|
backbone.eval() |
|
|
|
outputs = backbone(**inputs_dict) |
|
|
|
|
|
self.assertIsInstance(outputs.feature_maps, tuple) |
|
self.assertTrue(len(outputs.feature_maps) == 2) |
|
|
|
|
|
channels_from_stage_names = [ |
|
backbone.out_feature_channels[name] for name in backbone.stage_names if name in backbone.out_features |
|
] |
|
self.assertEqual(backbone.channels, channels_from_stage_names) |
|
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): |
|
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) |
|
|